{"title":"构建无电极电池的相间结构","authors":"Jiafeng Lei, Yi-Chun Lu","doi":"10.1038/s41560-024-01632-5","DOIUrl":null,"url":null,"abstract":"Deposition–dissolution reactions are key to the function of rechargeable batteries, but the limited reversibility of plating/stripping shortens their lifespan. Now, a liquid crystal interphase is shown to control deposition in preferred orientations, enabling dual-electrode-free batteries with enhanced reversibility and increased energy density.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"9 11","pages":"1325-1326"},"PeriodicalIF":49.7000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Building interphases for electrode-free batteries\",\"authors\":\"Jiafeng Lei, Yi-Chun Lu\",\"doi\":\"10.1038/s41560-024-01632-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deposition–dissolution reactions are key to the function of rechargeable batteries, but the limited reversibility of plating/stripping shortens their lifespan. Now, a liquid crystal interphase is shown to control deposition in preferred orientations, enabling dual-electrode-free batteries with enhanced reversibility and increased energy density.\",\"PeriodicalId\":19073,\"journal\":{\"name\":\"Nature Energy\",\"volume\":\"9 11\",\"pages\":\"1325-1326\"},\"PeriodicalIF\":49.7000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41560-024-01632-5\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41560-024-01632-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Deposition–dissolution reactions are key to the function of rechargeable batteries, but the limited reversibility of plating/stripping shortens their lifespan. Now, a liquid crystal interphase is shown to control deposition in preferred orientations, enabling dual-electrode-free batteries with enhanced reversibility and increased energy density.
Nature EnergyEnergy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍:
Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies.
With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector.
Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence.
In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.