Inhibitor_Mol_VAE:生成缓蚀剂分子的变异自动编码器方法

IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Haiyan Gong, Zhongheng Fu, Lingwei Ma, Dawei Zhang
{"title":"Inhibitor_Mol_VAE:生成缓蚀剂分子的变异自动编码器方法","authors":"Haiyan Gong, Zhongheng Fu, Lingwei Ma, Dawei Zhang","doi":"10.1038/s41529-024-00518-x","DOIUrl":null,"url":null,"abstract":"Deep learning-based generative modeling demonstrates proven advantages as an effective approach in molecular discovery. This study introduces a generative-network based method called Inhibitor_Mol_VAE, which uses a variational autoencoder model to generate corrosion inhibitor molecules with targeted inhibition efficiency. We first evaluate the model’s ability to reconstruct molecules. Then, we assess the model’s ability to generate new inhibitor molecules using physiochemical properties (including MolWt, LogP, Vdw_volume, and Electronegativity). New molecules with high inhibition efficiencies at low concentrations, such as [ethoxy(methoxy)phosphoryl]-phenylmethanol and (alpha-methylamino-benzyl)-phosphonsaeure-monoaethylester are successfully discovered.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-17"},"PeriodicalIF":6.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00518-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Inhibitor_Mol_VAE: a variational autoencoder approach for generating corrosion inhibitor molecules\",\"authors\":\"Haiyan Gong, Zhongheng Fu, Lingwei Ma, Dawei Zhang\",\"doi\":\"10.1038/s41529-024-00518-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning-based generative modeling demonstrates proven advantages as an effective approach in molecular discovery. This study introduces a generative-network based method called Inhibitor_Mol_VAE, which uses a variational autoencoder model to generate corrosion inhibitor molecules with targeted inhibition efficiency. We first evaluate the model’s ability to reconstruct molecules. Then, we assess the model’s ability to generate new inhibitor molecules using physiochemical properties (including MolWt, LogP, Vdw_volume, and Electronegativity). New molecules with high inhibition efficiencies at low concentrations, such as [ethoxy(methoxy)phosphoryl]-phenylmethanol and (alpha-methylamino-benzyl)-phosphonsaeure-monoaethylester are successfully discovered.\",\"PeriodicalId\":19270,\"journal\":{\"name\":\"npj Materials Degradation\",\"volume\":\" \",\"pages\":\"1-17\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41529-024-00518-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Materials Degradation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41529-024-00518-x\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Materials Degradation","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41529-024-00518-x","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于深度学习的生成模型作为一种有效的分子发现方法,其优势已得到证实。本研究介绍了一种基于生成网络的方法 Inhibitor_Mol_VAE,它使用变异自动编码器模型生成具有目标抑制效率的腐蚀抑制剂分子。我们首先评估了该模型重构分子的能力。然后,我们评估了该模型利用理化特性(包括 MolWt、LogP、Vdw_volume 和电负性)生成新缓蚀剂分子的能力。我们成功地发现了在低浓度下具有高抑制效率的新分子,如[乙氧基(甲氧基)磷酰]-苯基甲醇和(α-甲基氨基-苄基)-磷酰-单乙酯。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Inhibitor_Mol_VAE: a variational autoencoder approach for generating corrosion inhibitor molecules

Inhibitor_Mol_VAE: a variational autoencoder approach for generating corrosion inhibitor molecules
Deep learning-based generative modeling demonstrates proven advantages as an effective approach in molecular discovery. This study introduces a generative-network based method called Inhibitor_Mol_VAE, which uses a variational autoencoder model to generate corrosion inhibitor molecules with targeted inhibition efficiency. We first evaluate the model’s ability to reconstruct molecules. Then, we assess the model’s ability to generate new inhibitor molecules using physiochemical properties (including MolWt, LogP, Vdw_volume, and Electronegativity). New molecules with high inhibition efficiencies at low concentrations, such as [ethoxy(methoxy)phosphoryl]-phenylmethanol and (alpha-methylamino-benzyl)-phosphonsaeure-monoaethylester are successfully discovered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Materials Degradation
npj Materials Degradation MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.80
自引率
7.80%
发文量
86
审稿时长
6 weeks
期刊介绍: npj Materials Degradation considers basic and applied research that explores all aspects of the degradation of metallic and non-metallic materials. The journal broadly defines ‘materials degradation’ as a reduction in the ability of a material to perform its task in-service as a result of environmental exposure. The journal covers a broad range of topics including but not limited to: -Degradation of metals, glasses, minerals, polymers, ceramics, cements and composites in natural and engineered environments, as a result of various stimuli -Computational and experimental studies of degradation mechanisms and kinetics -Characterization of degradation by traditional and emerging techniques -New approaches and technologies for enhancing resistance to degradation -Inspection and monitoring techniques for materials in-service, such as sensing technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信