Amalendu P. Ranjan, Daniel J. Czyzyk, Griselle Martinez-Traverso, Aygul Sadiqova, Margarita Valhondo, Deborah A. Schaefer, Krasimir A. Spasov, William L. Jorgensen, Jamboor K. Vishwanatha, Michael W. Riggs, Alejandro Castellanos-Gonzalez and Karen S. Anderson
{"title":"纳米原药疗法在慢性隐孢子虫感染小鼠模型中显示出体内抗隐孢子虫疗效。","authors":"Amalendu P. Ranjan, Daniel J. Czyzyk, Griselle Martinez-Traverso, Aygul Sadiqova, Margarita Valhondo, Deborah A. Schaefer, Krasimir A. Spasov, William L. Jorgensen, Jamboor K. Vishwanatha, Michael W. Riggs, Alejandro Castellanos-Gonzalez and Karen S. Anderson","doi":"10.1039/D4PM00093E","DOIUrl":null,"url":null,"abstract":"<p >The gastrointestinal disease cryptosporidiosis, caused by the genus <em>Cryptosporidium</em>, is a common cause of diarrheal diseases in children, particularly in developing countries and frequently fatal in immunocompromised individuals. <em>Cryptosporidium hominis</em> (<em>Ch</em>)-specific bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS) has been a molecular target for inhibitor design. (<em>Note that this bifunctional enzyme has also been referred to as TS-DHFR in previous literature since the functional biochemical reaction first involves the conversion of methylene tetrahydrofolate to dihydrofolate at the TS site</em>.) While nanomolar inhibitors of <em>Ch</em> DHFR-TS have been identified at the biochemical level, effective delivery of these compounds to achieve anticryptosporidial activity in cell culture and <em>in vivo</em> models of parasite infection remains a major challenge in developing new therapies. Previous studies, using a nanotherapy approach, have shown a promising <em>Ch</em> DHFR-TS inhibitor, 906, that can successfully target <em>Cryptosporidium</em> parasites in cell culture with nanomolar anticryptosporidial activity. This formulation utilized poly(lactic-<em>co</em>-glycolic acid) (PLGA) nanoparticles (NPs) loaded with 906 (NP-906) and conjugated with a <em>Cryptosporidium</em> monoclonal antibody (MAb) on the nanoparticle surface to specifically target the glycoprotein GP25–200 in excysting oocysts. However, a limitation for <em>in vivo</em> use is antibody susceptibility to gastric acidity. To address this gap, a prodrug diethyl ester form of 906 (MAb-NP-Prodrug) was synthesized that allowed higher compound loading in the MAb-coated PLGA nanoparticles. An oral formulation was prepared by loading lyophilized MAb-NP-Prodrug into gelatin capsules with an enteric coating for gastric stability. Proof-of-concept studies with this oral formulation demonstrated antiparasitic activity in a chronic mouse model of <em>Cryptosporidium</em> infection. Efficacy was observed after a low daily dose of 2 × 8 mg kg<small><sup>−1</sup></small> for 5 days, when examined 6 and 20 days postinfection, offering a new avenue of drug delivery to be further explored.</p>","PeriodicalId":101141,"journal":{"name":"RSC Pharmaceutics","volume":" 5","pages":" 963-975"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447440/pdf/","citationCount":"0","resultStr":"{\"title\":\"Prodrug nanotherapy demonstrates in vivo anticryptosporidial efficacy in a mouse model of chronic Cryptosporidium infection†\",\"authors\":\"Amalendu P. Ranjan, Daniel J. Czyzyk, Griselle Martinez-Traverso, Aygul Sadiqova, Margarita Valhondo, Deborah A. Schaefer, Krasimir A. Spasov, William L. Jorgensen, Jamboor K. Vishwanatha, Michael W. Riggs, Alejandro Castellanos-Gonzalez and Karen S. Anderson\",\"doi\":\"10.1039/D4PM00093E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The gastrointestinal disease cryptosporidiosis, caused by the genus <em>Cryptosporidium</em>, is a common cause of diarrheal diseases in children, particularly in developing countries and frequently fatal in immunocompromised individuals. <em>Cryptosporidium hominis</em> (<em>Ch</em>)-specific bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS) has been a molecular target for inhibitor design. (<em>Note that this bifunctional enzyme has also been referred to as TS-DHFR in previous literature since the functional biochemical reaction first involves the conversion of methylene tetrahydrofolate to dihydrofolate at the TS site</em>.) While nanomolar inhibitors of <em>Ch</em> DHFR-TS have been identified at the biochemical level, effective delivery of these compounds to achieve anticryptosporidial activity in cell culture and <em>in vivo</em> models of parasite infection remains a major challenge in developing new therapies. Previous studies, using a nanotherapy approach, have shown a promising <em>Ch</em> DHFR-TS inhibitor, 906, that can successfully target <em>Cryptosporidium</em> parasites in cell culture with nanomolar anticryptosporidial activity. This formulation utilized poly(lactic-<em>co</em>-glycolic acid) (PLGA) nanoparticles (NPs) loaded with 906 (NP-906) and conjugated with a <em>Cryptosporidium</em> monoclonal antibody (MAb) on the nanoparticle surface to specifically target the glycoprotein GP25–200 in excysting oocysts. However, a limitation for <em>in vivo</em> use is antibody susceptibility to gastric acidity. To address this gap, a prodrug diethyl ester form of 906 (MAb-NP-Prodrug) was synthesized that allowed higher compound loading in the MAb-coated PLGA nanoparticles. An oral formulation was prepared by loading lyophilized MAb-NP-Prodrug into gelatin capsules with an enteric coating for gastric stability. Proof-of-concept studies with this oral formulation demonstrated antiparasitic activity in a chronic mouse model of <em>Cryptosporidium</em> infection. Efficacy was observed after a low daily dose of 2 × 8 mg kg<small><sup>−1</sup></small> for 5 days, when examined 6 and 20 days postinfection, offering a new avenue of drug delivery to be further explored.</p>\",\"PeriodicalId\":101141,\"journal\":{\"name\":\"RSC Pharmaceutics\",\"volume\":\" 5\",\"pages\":\" 963-975\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447440/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Pharmaceutics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/pm/d4pm00093e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Pharmaceutics","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/pm/d4pm00093e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prodrug nanotherapy demonstrates in vivo anticryptosporidial efficacy in a mouse model of chronic Cryptosporidium infection†
The gastrointestinal disease cryptosporidiosis, caused by the genus Cryptosporidium, is a common cause of diarrheal diseases in children, particularly in developing countries and frequently fatal in immunocompromised individuals. Cryptosporidium hominis (Ch)-specific bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS) has been a molecular target for inhibitor design. (Note that this bifunctional enzyme has also been referred to as TS-DHFR in previous literature since the functional biochemical reaction first involves the conversion of methylene tetrahydrofolate to dihydrofolate at the TS site.) While nanomolar inhibitors of Ch DHFR-TS have been identified at the biochemical level, effective delivery of these compounds to achieve anticryptosporidial activity in cell culture and in vivo models of parasite infection remains a major challenge in developing new therapies. Previous studies, using a nanotherapy approach, have shown a promising Ch DHFR-TS inhibitor, 906, that can successfully target Cryptosporidium parasites in cell culture with nanomolar anticryptosporidial activity. This formulation utilized poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) loaded with 906 (NP-906) and conjugated with a Cryptosporidium monoclonal antibody (MAb) on the nanoparticle surface to specifically target the glycoprotein GP25–200 in excysting oocysts. However, a limitation for in vivo use is antibody susceptibility to gastric acidity. To address this gap, a prodrug diethyl ester form of 906 (MAb-NP-Prodrug) was synthesized that allowed higher compound loading in the MAb-coated PLGA nanoparticles. An oral formulation was prepared by loading lyophilized MAb-NP-Prodrug into gelatin capsules with an enteric coating for gastric stability. Proof-of-concept studies with this oral formulation demonstrated antiparasitic activity in a chronic mouse model of Cryptosporidium infection. Efficacy was observed after a low daily dose of 2 × 8 mg kg−1 for 5 days, when examined 6 and 20 days postinfection, offering a new avenue of drug delivery to be further explored.