人工智能增强对运动员亚临床冠状动脉疾病的检测:诊断性能和局限性。

Jens Kübler, Jan M Brendel, Thomas Küstner, Jonathan Walterspiel, Florian Hagen, Jean-François Paul, Konstantin Nikolaou, Sebastian Gassenmaier, Ilias Tsiflikas, Christof Burgstahler, Simon Greulich, Moritz T Winkelmann, Patrick Krumm
{"title":"人工智能增强对运动员亚临床冠状动脉疾病的检测:诊断性能和局限性。","authors":"Jens Kübler, Jan M Brendel, Thomas Küstner, Jonathan Walterspiel, Florian Hagen, Jean-François Paul, Konstantin Nikolaou, Sebastian Gassenmaier, Ilias Tsiflikas, Christof Burgstahler, Simon Greulich, Moritz T Winkelmann, Patrick Krumm","doi":"10.1007/s10554-024-03256-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study evaluates the diagnostic performance of artificial intelligence (AI)-based coronary computed tomography angiography (CCTA) for detecting coronary artery disease (CAD) and assessing fractional flow reserve (FFR) in asymptomatic male marathon runners.</p><p><strong>Material and methods: </strong>We prospectively recruited 100 asymptomatic male marathon runners over the age of 45 for CAD screening. CCTA was analyzed using AI models (CorEx and Spimed-AI) on a local server. The models focused on detecting significant CAD (≥ 50% diameter stenosis, CAD-RADS 3, 4, or 5) and distinguishing hemodynamically significant stenosis (FFR ≤ 0.8) from non-significant stenosis (FFR > 0.8). Statistical analysis included sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy.</p><p><strong>Results: </strong>The AI model demonstrated high sensitivity, with 91.2% for any CAD and 100% for significant CAD, and high NPV, with 92.7% for any CAD and 100% for significant CAD. The diagnostic accuracy was 73.4% for any CAD and 90.4% for significant CAD. However, the PPV was lower, particularly for significant CAD (25.0%), indicating a higher incidence of false positives.</p><p><strong>Conclusion: </strong>AI-enhanced CCTA is a valuable non-invasive tool for detecting CAD in asymptomatic, low-risk populations. The AI model exhibited high sensitivity and NPV, particularly for identifying significant stenosis, reinforcing its potential role in screening. However, limitations such as a lower PPV and overestimation of disease indicate that further refinement of AI algorithms is needed to improve specificity. Despite these challenges, AI-based CCTA offers significant promise when integrated with clinical expertise, enhancing diagnostic accuracy and guiding patient management in low-risk groups.</p>","PeriodicalId":94227,"journal":{"name":"The international journal of cardiovascular imaging","volume":" ","pages":"2503-2511"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11618201/pdf/","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence-enhanced detection of subclinical coronary artery disease in athletes: diagnostic performance and limitations.\",\"authors\":\"Jens Kübler, Jan M Brendel, Thomas Küstner, Jonathan Walterspiel, Florian Hagen, Jean-François Paul, Konstantin Nikolaou, Sebastian Gassenmaier, Ilias Tsiflikas, Christof Burgstahler, Simon Greulich, Moritz T Winkelmann, Patrick Krumm\",\"doi\":\"10.1007/s10554-024-03256-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>This study evaluates the diagnostic performance of artificial intelligence (AI)-based coronary computed tomography angiography (CCTA) for detecting coronary artery disease (CAD) and assessing fractional flow reserve (FFR) in asymptomatic male marathon runners.</p><p><strong>Material and methods: </strong>We prospectively recruited 100 asymptomatic male marathon runners over the age of 45 for CAD screening. CCTA was analyzed using AI models (CorEx and Spimed-AI) on a local server. The models focused on detecting significant CAD (≥ 50% diameter stenosis, CAD-RADS 3, 4, or 5) and distinguishing hemodynamically significant stenosis (FFR ≤ 0.8) from non-significant stenosis (FFR > 0.8). Statistical analysis included sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy.</p><p><strong>Results: </strong>The AI model demonstrated high sensitivity, with 91.2% for any CAD and 100% for significant CAD, and high NPV, with 92.7% for any CAD and 100% for significant CAD. The diagnostic accuracy was 73.4% for any CAD and 90.4% for significant CAD. However, the PPV was lower, particularly for significant CAD (25.0%), indicating a higher incidence of false positives.</p><p><strong>Conclusion: </strong>AI-enhanced CCTA is a valuable non-invasive tool for detecting CAD in asymptomatic, low-risk populations. The AI model exhibited high sensitivity and NPV, particularly for identifying significant stenosis, reinforcing its potential role in screening. However, limitations such as a lower PPV and overestimation of disease indicate that further refinement of AI algorithms is needed to improve specificity. Despite these challenges, AI-based CCTA offers significant promise when integrated with clinical expertise, enhancing diagnostic accuracy and guiding patient management in low-risk groups.</p>\",\"PeriodicalId\":94227,\"journal\":{\"name\":\"The international journal of cardiovascular imaging\",\"volume\":\" \",\"pages\":\"2503-2511\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11618201/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The international journal of cardiovascular imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10554-024-03256-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The international journal of cardiovascular imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10554-024-03256-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究评估了基于人工智能(AI)的冠状动脉计算机断层扫描血管造影术(CCTA)在无症状男性马拉松运动员中检测冠状动脉疾病(CAD)和评估分数血流储备(FFR)的诊断性能:我们前瞻性地招募了100名45岁以上无症状的男性马拉松运动员进行CAD筛查。在本地服务器上使用人工智能模型(CorEx 和 Spimed-AI)对 CCTA 进行分析。这些模型侧重于检测明显的 CAD(直径狭窄≥ 50%,CAD-RADS 3、4 或 5),并区分血流动力学上明显的狭窄(FFR ≤ 0.8)和不明显的狭窄(FFR > 0.8)。统计分析包括敏感性、特异性、阳性预测值(PPV)、阴性预测值(NPV)和准确性:人工智能模型显示出较高的灵敏度,对任何CAD的灵敏度为91.2%,对显著CAD的灵敏度为100%;较高的阴性预测值,对任何CAD的阴性预测值为92.7%,对显著CAD的阴性预测值为100%。诊断准确率为73.4%(任何CAD)和90.4%(重大CAD)。然而,PPV 较低,尤其是重大 CAD(25.0%),表明假阳性的发生率较高:结论:AI 增强 CCTA 是检测无症状、低风险人群中的 CAD 的重要无创工具。AI 模型表现出较高的灵敏度和 NPV,尤其是在识别明显狭窄方面,从而加强了其在筛查中的潜在作用。然而,PPV 较低和高估疾病等局限性表明,需要进一步改进人工智能算法以提高特异性。尽管存在这些挑战,但基于人工智能的 CCTA 在与临床专业知识相结合、提高诊断准确性和指导低风险人群的患者管理方面大有可为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial intelligence-enhanced detection of subclinical coronary artery disease in athletes: diagnostic performance and limitations.

Purpose: This study evaluates the diagnostic performance of artificial intelligence (AI)-based coronary computed tomography angiography (CCTA) for detecting coronary artery disease (CAD) and assessing fractional flow reserve (FFR) in asymptomatic male marathon runners.

Material and methods: We prospectively recruited 100 asymptomatic male marathon runners over the age of 45 for CAD screening. CCTA was analyzed using AI models (CorEx and Spimed-AI) on a local server. The models focused on detecting significant CAD (≥ 50% diameter stenosis, CAD-RADS 3, 4, or 5) and distinguishing hemodynamically significant stenosis (FFR ≤ 0.8) from non-significant stenosis (FFR > 0.8). Statistical analysis included sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy.

Results: The AI model demonstrated high sensitivity, with 91.2% for any CAD and 100% for significant CAD, and high NPV, with 92.7% for any CAD and 100% for significant CAD. The diagnostic accuracy was 73.4% for any CAD and 90.4% for significant CAD. However, the PPV was lower, particularly for significant CAD (25.0%), indicating a higher incidence of false positives.

Conclusion: AI-enhanced CCTA is a valuable non-invasive tool for detecting CAD in asymptomatic, low-risk populations. The AI model exhibited high sensitivity and NPV, particularly for identifying significant stenosis, reinforcing its potential role in screening. However, limitations such as a lower PPV and overestimation of disease indicate that further refinement of AI algorithms is needed to improve specificity. Despite these challenges, AI-based CCTA offers significant promise when integrated with clinical expertise, enhancing diagnostic accuracy and guiding patient management in low-risk groups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信