用于输送植物生物活性物质的固体脂质纳米颗粒(SLN)和纳米结构脂质载体(NLC):第一部分--成分和生产方法。

Expert opinion on drug delivery Pub Date : 2024-10-01 Epub Date: 2024-10-07 DOI:10.1080/17425247.2024.2410951
Faezeh Fathi, Tatiane O X Machado, Helena de A C Kodel, Isabella Portugal, Inês O Ferreira, Aleksandra Zielinska, M Beatriz P P Oliveira, Eliana B Souto
{"title":"用于输送植物生物活性物质的固体脂质纳米颗粒(SLN)和纳米结构脂质载体(NLC):第一部分--成分和生产方法。","authors":"Faezeh Fathi, Tatiane O X Machado, Helena de A C Kodel, Isabella Portugal, Inês O Ferreira, Aleksandra Zielinska, M Beatriz P P Oliveira, Eliana B Souto","doi":"10.1080/17425247.2024.2410951","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Nanoparticles (NPs) are widely used in the pharmaceutical field to treat various human disorders. Among these, lipid-based NPs (LNPs), including solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), are favored for drug/bioactive delivery due to their high stability, biocompatibility, encapsulation efficiency, and sustained/controlled release. These properties make them particularly suitable as carriers of compounds derived from plant sources.</p><p><strong>Areas covered: </strong>This study comprehensively explores updated literature knowledge on SLN and NLC, focusing on their composition and production methods for the specific delivery of drug/bioactive compounds derived from plant sources of interest in pharmaceutical and biomedical fields.</p><p><strong>Expert opinion: </strong>SLN and NLC facilitate the development of more effective natural product-based therapies, aiming to reduce dosage and minimize side effects. These delivery systems align with the consumer demands for safer and more sustainable products, as there are also based on biocompatible and biodegradable raw materials, thereby posing minimal toxicological risks while also meeting regulatory guidelines.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"1479-1490"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for the delivery of bioactives sourced from plants: part I - composition and production methods.\",\"authors\":\"Faezeh Fathi, Tatiane O X Machado, Helena de A C Kodel, Isabella Portugal, Inês O Ferreira, Aleksandra Zielinska, M Beatriz P P Oliveira, Eliana B Souto\",\"doi\":\"10.1080/17425247.2024.2410951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Nanoparticles (NPs) are widely used in the pharmaceutical field to treat various human disorders. Among these, lipid-based NPs (LNPs), including solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), are favored for drug/bioactive delivery due to their high stability, biocompatibility, encapsulation efficiency, and sustained/controlled release. These properties make them particularly suitable as carriers of compounds derived from plant sources.</p><p><strong>Areas covered: </strong>This study comprehensively explores updated literature knowledge on SLN and NLC, focusing on their composition and production methods for the specific delivery of drug/bioactive compounds derived from plant sources of interest in pharmaceutical and biomedical fields.</p><p><strong>Expert opinion: </strong>SLN and NLC facilitate the development of more effective natural product-based therapies, aiming to reduce dosage and minimize side effects. These delivery systems align with the consumer demands for safer and more sustainable products, as there are also based on biocompatible and biodegradable raw materials, thereby posing minimal toxicological risks while also meeting regulatory guidelines.</p>\",\"PeriodicalId\":94004,\"journal\":{\"name\":\"Expert opinion on drug delivery\",\"volume\":\" \",\"pages\":\"1479-1490\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert opinion on drug delivery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17425247.2024.2410951\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert opinion on drug delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17425247.2024.2410951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

导言:纳米颗粒(NPs)被广泛应用于医药领域,治疗人类的各种疾病。其中,脂基纳米粒子(LNPs),包括固体脂质纳米粒子(SLN)和纳米结构脂质载体(NLC),因其高稳定性、生物相容性、封装效率和持续/可控释放等特性,在药物/生物活性递送方面备受青睐。这些特性使它们特别适合作为植物来源化合物的载体:本研究全面探讨了有关 SLN 和 NLC 的最新文献知识,重点关注它们的组成和生产方法,以便为制药和生物医学领域感兴趣的植物源药物/生物活性化合物提供特定载体:SLN 和 NLC 有助于开发更有效的基于天然产品的疗法,从而减少用量并将副作用降至最低。这些给药系统符合消费者对更安全、更可持续产品的需求,因为它们也是基于生物兼容和可生物降解的原材料,因此毒理学风险最小,同时也符合监管准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for the delivery of bioactives sourced from plants: part I - composition and production methods.

Introduction: Nanoparticles (NPs) are widely used in the pharmaceutical field to treat various human disorders. Among these, lipid-based NPs (LNPs), including solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), are favored for drug/bioactive delivery due to their high stability, biocompatibility, encapsulation efficiency, and sustained/controlled release. These properties make them particularly suitable as carriers of compounds derived from plant sources.

Areas covered: This study comprehensively explores updated literature knowledge on SLN and NLC, focusing on their composition and production methods for the specific delivery of drug/bioactive compounds derived from plant sources of interest in pharmaceutical and biomedical fields.

Expert opinion: SLN and NLC facilitate the development of more effective natural product-based therapies, aiming to reduce dosage and minimize side effects. These delivery systems align with the consumer demands for safer and more sustainable products, as there are also based on biocompatible and biodegradable raw materials, thereby posing minimal toxicological risks while also meeting regulatory guidelines.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信