Stephen P. Ellner, Robin E. Snyder, Peter B. Adler, Christina M. Hernández, Giles Hooker
{"title":"这是关于(占用)空间:个体的分散性与空间共存机制的强度。","authors":"Stephen P. Ellner, Robin E. Snyder, Peter B. Adler, Christina M. Hernández, Giles Hooker","doi":"10.1002/ecy.4404","DOIUrl":null,"url":null,"abstract":"<p>One strand of modern coexistence theory (MCT) partitions invader growth rates (IGR) to quantify how different mechanisms contribute to species coexistence, highlighting fluctuation-dependent mechanisms. A general conclusion from the classical analytic MCT theory is that coexistence mechanisms relying on temporal variation (such as the temporal storage effect) are generally less effective at promoting coexistence than mechanisms relying on spatial or spatiotemporal variation (primarily growth-density covariance). However, the analytic theory assumes continuous population density, and IGRs are calculated for infinitesimally rare invaders that have infinite time to find their preferred habitat and regrow, without ever experiencing intraspecific competition. Here we ask if the disparity between spatial and temporal mechanisms persists when individuals are, instead, discrete and occupy finite amounts of space. We present a simulation-based approach to quantifying IGRs in this situation, building on our previous approach for spatially non-varying habitats. As expected, we found that spatial mechanisms are weakened; unexpectedly, the contribution to IGR from growth-density covariance could even become negative, opposing coexistence. We also found shifts in which demographic parameters had the largest effect on the strength of spatial coexistence mechanisms. Our substantive conclusions are statements about one model, across parameter ranges that we subjectively considered realistic. Using the methods developed here, effects of individual discreteness should be explored theoretically across a broader range of conditions, and in models parameterized from empirical data on real communities.</p>","PeriodicalId":11484,"journal":{"name":"Ecology","volume":"105 11","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"It's about (taking up) space: Discreteness of individuals and the strength of spatial coexistence mechanisms\",\"authors\":\"Stephen P. Ellner, Robin E. Snyder, Peter B. Adler, Christina M. Hernández, Giles Hooker\",\"doi\":\"10.1002/ecy.4404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>One strand of modern coexistence theory (MCT) partitions invader growth rates (IGR) to quantify how different mechanisms contribute to species coexistence, highlighting fluctuation-dependent mechanisms. A general conclusion from the classical analytic MCT theory is that coexistence mechanisms relying on temporal variation (such as the temporal storage effect) are generally less effective at promoting coexistence than mechanisms relying on spatial or spatiotemporal variation (primarily growth-density covariance). However, the analytic theory assumes continuous population density, and IGRs are calculated for infinitesimally rare invaders that have infinite time to find their preferred habitat and regrow, without ever experiencing intraspecific competition. Here we ask if the disparity between spatial and temporal mechanisms persists when individuals are, instead, discrete and occupy finite amounts of space. We present a simulation-based approach to quantifying IGRs in this situation, building on our previous approach for spatially non-varying habitats. As expected, we found that spatial mechanisms are weakened; unexpectedly, the contribution to IGR from growth-density covariance could even become negative, opposing coexistence. We also found shifts in which demographic parameters had the largest effect on the strength of spatial coexistence mechanisms. Our substantive conclusions are statements about one model, across parameter ranges that we subjectively considered realistic. Using the methods developed here, effects of individual discreteness should be explored theoretically across a broader range of conditions, and in models parameterized from empirical data on real communities.</p>\",\"PeriodicalId\":11484,\"journal\":{\"name\":\"Ecology\",\"volume\":\"105 11\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ecy.4404\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecy.4404","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
It's about (taking up) space: Discreteness of individuals and the strength of spatial coexistence mechanisms
One strand of modern coexistence theory (MCT) partitions invader growth rates (IGR) to quantify how different mechanisms contribute to species coexistence, highlighting fluctuation-dependent mechanisms. A general conclusion from the classical analytic MCT theory is that coexistence mechanisms relying on temporal variation (such as the temporal storage effect) are generally less effective at promoting coexistence than mechanisms relying on spatial or spatiotemporal variation (primarily growth-density covariance). However, the analytic theory assumes continuous population density, and IGRs are calculated for infinitesimally rare invaders that have infinite time to find their preferred habitat and regrow, without ever experiencing intraspecific competition. Here we ask if the disparity between spatial and temporal mechanisms persists when individuals are, instead, discrete and occupy finite amounts of space. We present a simulation-based approach to quantifying IGRs in this situation, building on our previous approach for spatially non-varying habitats. As expected, we found that spatial mechanisms are weakened; unexpectedly, the contribution to IGR from growth-density covariance could even become negative, opposing coexistence. We also found shifts in which demographic parameters had the largest effect on the strength of spatial coexistence mechanisms. Our substantive conclusions are statements about one model, across parameter ranges that we subjectively considered realistic. Using the methods developed here, effects of individual discreteness should be explored theoretically across a broader range of conditions, and in models parameterized from empirical data on real communities.
期刊介绍:
Ecology publishes articles that report on the basic elements of ecological research. Emphasis is placed on concise, clear articles documenting important ecological phenomena. The journal publishes a broad array of research that includes a rapidly expanding envelope of subject matter, techniques, approaches, and concepts: paleoecology through present-day phenomena; evolutionary, population, physiological, community, and ecosystem ecology, as well as biogeochemistry; inclusive of descriptive, comparative, experimental, mathematical, statistical, and interdisciplinary approaches.