监测绝对脑血流的全光学技术:与磁共振成像灌注对比验证。

IF 4.8 2区 医学 Q1 NEUROSCIENCES
Neurophotonics Pub Date : 2024-10-01 Epub Date: 2024-10-03 DOI:10.1117/1.NPh.11.4.045002
Leena N Shoemaker, Saeed Samaei, Graham Deller, Danny J J Wang, Daniel Milej, Keith St Lawrence
{"title":"监测绝对脑血流的全光学技术:与磁共振成像灌注对比验证。","authors":"Leena N Shoemaker, Saeed Samaei, Graham Deller, Danny J J Wang, Daniel Milej, Keith St Lawrence","doi":"10.1117/1.NPh.11.4.045002","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>The ability to monitor cerebral blood flow (CBF) at the bedside is essential to managing critical-care patients with neurological emergencies. Diffuse correlation spectroscopy (DCS) is ideal because it is non-invasive, portable, and inexpensive. We investigated a near-infrared spectroscopy (NIRS) approach for converting DCS measurements into physiological units of blood flow.</p><p><strong>Aim: </strong>Using magnetic resonance imaging perfusion as a reference, we investigated the accuracy of absolute CBF measurements from a bolus-tracking NIRS method that used transient hypoxia as a flow tracer and hypercapnia-induced increases in CBF measured by DCS.</p><p><strong>Approach: </strong>Twelve participants (7 female, <math><mrow><mn>28</mn> <mo>±</mo> <mn>6</mn></mrow> </math> years) completed a hypercapnia protocol with simultaneous CBF recordings from DCS and arterial spin labeling (ASL). Nine participants completed the transient hypoxia protocol while instrumented with time-resolved NIRS. The estimate of baseline CBF was subsequently used to calibrate hypercapnic DCS data.</p><p><strong>Results: </strong>Moderately strong correlations at baseline ( <math><mrow><mtext>slope</mtext> <mo>=</mo> <mn>0.79</mn></mrow> </math> and <math> <mrow><msup><mi>R</mi> <mn>2</mn></msup> <mo>=</mo> <mn>0.59</mn></mrow> </math> ) and during hypercapnia ( <math><mrow><mtext>slope</mtext> <mo>=</mo> <mn>0.90</mn></mrow> </math> and <math> <mrow><msup><mi>R</mi> <mn>2</mn></msup> <mo>=</mo> <mn>0.58</mn></mrow> </math> ) were found between CBF values from calibrated DCS and ASL (range 34 to <math><mrow><mn>85</mn> <mtext>  </mtext> <mi>mL</mi> <mo>/</mo> <mn>100</mn> <mtext>  </mtext> <mi>g</mi> <mo>/</mo> <mi>min</mi></mrow> </math> ).</p><p><strong>Conclusions: </strong>Results demonstrated the feasibility of an all-optics approach that can both quantify CBF and perform continuous perfusion monitoring.</p>","PeriodicalId":54335,"journal":{"name":"Neurophotonics","volume":"11 4","pages":"045002"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448701/pdf/","citationCount":"0","resultStr":"{\"title\":\"All-optics technique for monitoring absolute cerebral blood flow: validation against magnetic resonance imaging perfusion.\",\"authors\":\"Leena N Shoemaker, Saeed Samaei, Graham Deller, Danny J J Wang, Daniel Milej, Keith St Lawrence\",\"doi\":\"10.1117/1.NPh.11.4.045002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Significance: </strong>The ability to monitor cerebral blood flow (CBF) at the bedside is essential to managing critical-care patients with neurological emergencies. Diffuse correlation spectroscopy (DCS) is ideal because it is non-invasive, portable, and inexpensive. We investigated a near-infrared spectroscopy (NIRS) approach for converting DCS measurements into physiological units of blood flow.</p><p><strong>Aim: </strong>Using magnetic resonance imaging perfusion as a reference, we investigated the accuracy of absolute CBF measurements from a bolus-tracking NIRS method that used transient hypoxia as a flow tracer and hypercapnia-induced increases in CBF measured by DCS.</p><p><strong>Approach: </strong>Twelve participants (7 female, <math><mrow><mn>28</mn> <mo>±</mo> <mn>6</mn></mrow> </math> years) completed a hypercapnia protocol with simultaneous CBF recordings from DCS and arterial spin labeling (ASL). Nine participants completed the transient hypoxia protocol while instrumented with time-resolved NIRS. The estimate of baseline CBF was subsequently used to calibrate hypercapnic DCS data.</p><p><strong>Results: </strong>Moderately strong correlations at baseline ( <math><mrow><mtext>slope</mtext> <mo>=</mo> <mn>0.79</mn></mrow> </math> and <math> <mrow><msup><mi>R</mi> <mn>2</mn></msup> <mo>=</mo> <mn>0.59</mn></mrow> </math> ) and during hypercapnia ( <math><mrow><mtext>slope</mtext> <mo>=</mo> <mn>0.90</mn></mrow> </math> and <math> <mrow><msup><mi>R</mi> <mn>2</mn></msup> <mo>=</mo> <mn>0.58</mn></mrow> </math> ) were found between CBF values from calibrated DCS and ASL (range 34 to <math><mrow><mn>85</mn> <mtext>  </mtext> <mi>mL</mi> <mo>/</mo> <mn>100</mn> <mtext>  </mtext> <mi>g</mi> <mo>/</mo> <mi>min</mi></mrow> </math> ).</p><p><strong>Conclusions: </strong>Results demonstrated the feasibility of an all-optics approach that can both quantify CBF and perform continuous perfusion monitoring.</p>\",\"PeriodicalId\":54335,\"journal\":{\"name\":\"Neurophotonics\",\"volume\":\"11 4\",\"pages\":\"045002\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448701/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurophotonics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.NPh.11.4.045002\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurophotonics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.NPh.11.4.045002","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

意义重大:床旁监测脑血流(CBF)的能力对于管理神经系统急症的重症监护患者至关重要。弥散相关光谱(DCS)是一种理想的方法,因为它具有无创、便携和廉价的特点。我们研究了一种近红外光谱(NIRS)方法,用于将 DCS 测量值转换为生理单位的血流量。目的:以磁共振成像灌注为参考,我们研究了使用瞬时缺氧作为血流示踪剂的栓剂跟踪 NIRS 方法和 DCS 测量的高碳酸血症诱导的 CBF 绝对值测量的准确性:12 名参与者(7 名女性,28 ± 6 岁)完成了高碳酸血症方案,并同时通过 DCS 和动脉自旋标记 (ASL) 记录了 CBF。九名参与者在使用时间分辨近红外光谱仪的同时完成了瞬时缺氧方案。基线 CBF 的估计值随后被用于校准高碳酸血症 DCS 数据:结果:在基线(斜率 = 0.79 和 R 2 = 0.59)和高碳酸血症期间(斜率 = 0.90 和 R 2 = 0.58),校准的 DCS 和 ASL 的 CBF 值(范围为 34 至 85 mL / 100 g / min)之间存在中等程度的相关性:结果表明,既能量化 CBF 又能进行连续灌注监测的全光学方法是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
All-optics technique for monitoring absolute cerebral blood flow: validation against magnetic resonance imaging perfusion.

Significance: The ability to monitor cerebral blood flow (CBF) at the bedside is essential to managing critical-care patients with neurological emergencies. Diffuse correlation spectroscopy (DCS) is ideal because it is non-invasive, portable, and inexpensive. We investigated a near-infrared spectroscopy (NIRS) approach for converting DCS measurements into physiological units of blood flow.

Aim: Using magnetic resonance imaging perfusion as a reference, we investigated the accuracy of absolute CBF measurements from a bolus-tracking NIRS method that used transient hypoxia as a flow tracer and hypercapnia-induced increases in CBF measured by DCS.

Approach: Twelve participants (7 female, 28 ± 6 years) completed a hypercapnia protocol with simultaneous CBF recordings from DCS and arterial spin labeling (ASL). Nine participants completed the transient hypoxia protocol while instrumented with time-resolved NIRS. The estimate of baseline CBF was subsequently used to calibrate hypercapnic DCS data.

Results: Moderately strong correlations at baseline ( slope = 0.79 and R 2 = 0.59 ) and during hypercapnia ( slope = 0.90 and R 2 = 0.58 ) were found between CBF values from calibrated DCS and ASL (range 34 to 85    mL / 100    g / min ).

Conclusions: Results demonstrated the feasibility of an all-optics approach that can both quantify CBF and perform continuous perfusion monitoring.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurophotonics
Neurophotonics Neuroscience-Neuroscience (miscellaneous)
CiteScore
7.20
自引率
11.30%
发文量
114
审稿时长
21 weeks
期刊介绍: At the interface of optics and neuroscience, Neurophotonics is a peer-reviewed journal that covers advances in optical technology applicable to study of the brain and their impact on the basic and clinical neuroscience applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信