针对纵向过度分散二项数据的贝叶斯贝塔-二项式片断增长混合模型。

IF 1.6 3区 医学 Q3 HEALTH CARE SCIENCES & SERVICES
Statistical Methods in Medical Research Pub Date : 2024-10-01 Epub Date: 2024-10-07 DOI:10.1177/09622802241279109
Chun-Che Wen, Nathaniel Baker, Rajib Paul, Elizabeth Hill, Kelly Hunt, Hong Li, Kevin Gray, Brian Neelon
{"title":"针对纵向过度分散二项数据的贝叶斯贝塔-二项式片断增长混合模型。","authors":"Chun-Che Wen, Nathaniel Baker, Rajib Paul, Elizabeth Hill, Kelly Hunt, Hong Li, Kevin Gray, Brian Neelon","doi":"10.1177/09622802241279109","DOIUrl":null,"url":null,"abstract":"<p><p>In a recent 12-week smoking cessation trial, varenicline tartrate failed to show significant improvements in enhancing end-of-treatment abstinence when compared with placebo among adolescents and young adults. The original analysis aimed to assess the average effect across the entire population using timeline followback methods, which typically involve overdispersed binomial counts. We instead propose to investigate treatment effect heterogeneity among latent classes of participants using a Bayesian beta-binomial piecewise linear growth mixture model specifically designed to address longitudinal overdispersed binomial responses. Within each class, we fit a piecewise linear beta-binomial mixed model with random changepoints for each study group to detect critical windows of treatment efficacy. Using this model, we can cluster subjects who share similar characteristics, estimate the class-specific mean abstinence trends for each study group, and quantify the treatment effect over time within each class. Our analysis identified two classes of subjects: one comprising high-abstinent individuals, typically young adults and light smokers, in which varenicline led to improved abstinence; and another comprising low-abstinent individuals for whom varenicline showed no discernible effect. These findings highlight the importance of tailoring varenicline to specific participant subgroups, thereby advancing precision medicine in smoking cessation studies.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"1859-1876"},"PeriodicalIF":1.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bayesian beta-binomial piecewise growth mixture model for longitudinal overdispersed binomial data.\",\"authors\":\"Chun-Che Wen, Nathaniel Baker, Rajib Paul, Elizabeth Hill, Kelly Hunt, Hong Li, Kevin Gray, Brian Neelon\",\"doi\":\"10.1177/09622802241279109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In a recent 12-week smoking cessation trial, varenicline tartrate failed to show significant improvements in enhancing end-of-treatment abstinence when compared with placebo among adolescents and young adults. The original analysis aimed to assess the average effect across the entire population using timeline followback methods, which typically involve overdispersed binomial counts. We instead propose to investigate treatment effect heterogeneity among latent classes of participants using a Bayesian beta-binomial piecewise linear growth mixture model specifically designed to address longitudinal overdispersed binomial responses. Within each class, we fit a piecewise linear beta-binomial mixed model with random changepoints for each study group to detect critical windows of treatment efficacy. Using this model, we can cluster subjects who share similar characteristics, estimate the class-specific mean abstinence trends for each study group, and quantify the treatment effect over time within each class. Our analysis identified two classes of subjects: one comprising high-abstinent individuals, typically young adults and light smokers, in which varenicline led to improved abstinence; and another comprising low-abstinent individuals for whom varenicline showed no discernible effect. These findings highlight the importance of tailoring varenicline to specific participant subgroups, thereby advancing precision medicine in smoking cessation studies.</p>\",\"PeriodicalId\":22038,\"journal\":{\"name\":\"Statistical Methods in Medical Research\",\"volume\":\" \",\"pages\":\"1859-1876\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Methods in Medical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/09622802241279109\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241279109","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

在最近一项为期 12 周的戒烟试验中,与安慰剂相比,酒石酸伐尼克兰在提高青少年和年轻成人治疗结束后的戒烟率方面没有显示出明显的改善。最初的分析旨在使用时间轴回溯法评估整个人群的平均效果,这种方法通常涉及过度分散的二项式计数。相反,我们建议使用贝叶斯β-二叉片断线性增长混合模型来研究潜在参与者类别之间的治疗效果异质性,该模型是专门为解决纵向过度分散二叉反应而设计的。在每个类别中,我们拟合了一个片断线性贝塔-二叉混合模型,每个研究组都有随机变化点,以检测治疗效果的临界窗口。利用该模型,我们可以对具有相似特征的受试者进行分组,估算出每个研究组的特定班级平均戒断趋势,并量化每个班级随时间变化的治疗效果。我们的分析确定了两类受试者:一类是高戒断率人群,通常是年轻人和轻度吸烟者,伐伦克林提高了他们的戒断率;另一类是低戒断率人群,伐伦克林对他们没有明显效果。这些发现凸显了针对特定参与者亚群定制伐尼克兰的重要性,从而推动了戒烟研究中的精准医疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Bayesian beta-binomial piecewise growth mixture model for longitudinal overdispersed binomial data.

In a recent 12-week smoking cessation trial, varenicline tartrate failed to show significant improvements in enhancing end-of-treatment abstinence when compared with placebo among adolescents and young adults. The original analysis aimed to assess the average effect across the entire population using timeline followback methods, which typically involve overdispersed binomial counts. We instead propose to investigate treatment effect heterogeneity among latent classes of participants using a Bayesian beta-binomial piecewise linear growth mixture model specifically designed to address longitudinal overdispersed binomial responses. Within each class, we fit a piecewise linear beta-binomial mixed model with random changepoints for each study group to detect critical windows of treatment efficacy. Using this model, we can cluster subjects who share similar characteristics, estimate the class-specific mean abstinence trends for each study group, and quantify the treatment effect over time within each class. Our analysis identified two classes of subjects: one comprising high-abstinent individuals, typically young adults and light smokers, in which varenicline led to improved abstinence; and another comprising low-abstinent individuals for whom varenicline showed no discernible effect. These findings highlight the importance of tailoring varenicline to specific participant subgroups, thereby advancing precision medicine in smoking cessation studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Methods in Medical Research
Statistical Methods in Medical Research 医学-数学与计算生物学
CiteScore
4.10
自引率
4.30%
发文量
127
审稿时长
>12 weeks
期刊介绍: Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信