{"title":"深度学习作物平台(DL-CRoP):用于农作物的物种级识别和营养状况。","authors":"Mohammad Urfan, Prakriti Rajput, Palak Mahajan, Shubham Sharma, Haroon Rashid Hakla, Verasis Kour, Bhubneshwari Khajuria, Rehana Chowdhary, Parveen Kumar Lehana, Namrata Karlupia, Pawanesh Abrol, Lam Son Phan Tran, Sikander Pal Choudhary","doi":"10.34133/research.0491","DOIUrl":null,"url":null,"abstract":"<p><p>Precise and timely detection of a crop's nutrient requirement will play a crucial role in assuring optimum plant growth and crop yield. The present study introduces a reliable deep learning platform called \"Deep Learning-Crop Platform\" (DL-CRoP) for the identification of some commercially grown plants and their nutrient requirements using leaf, stem, and root images using a convolutional neural network (CNN). It extracts intrinsic feature patterns through hierarchical mapping and provides remarkable outcomes in identification tasks. The DL-CRoP platform is trained on the plant image dataset, namely, Jammu University-Botany Image Database (JU-BID), available at https://github.com/urfanbutt. The findings demonstrate implementation of DL-CRoP-cases A (uses shoot images) and B (uses leaf images) for species identification for <i>Solanum lycopersicum</i> (tomato), <i>Vigna radiata</i> (Vigna), and <i>Zea mays</i> (maize), and cases C (uses leaf images) and D (uses root images) for diagnosis of nitrogen deficiency in maize. The platform achieved a higher rate of accuracy at 80-20, 70-30, and 60-40 splits for all the case studies, compared with established algorithms such as random forest, K-nearest neighbor, support vector machine, AdaBoost, and naïve Bayes. It provides a higher accuracy rate in classification parameters like recall, precision, and F1 score for cases A (90.45%), B (100%), and C (93.21), while a medium-level accuracy of 68.54% for case D. To further improve the accuracy of the platform in case study C, the CNN was modified including a multi-head attention (MHA) block. It resulted in the enhancement of the accuracy of classifying the nitrogen deficiency above 95%. The platform could play an important role in evaluating the health status of crop plants along with a role in precise identification of species. It may be used as a better module for precision crop cultivation under limited nutrient conditions.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"7 ","pages":"0491"},"PeriodicalIF":11.0000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450475/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Deep Learning-Crop Platform (DL-CRoP): For Species-Level Identification and Nutrient Status of Agricultural Crops.\",\"authors\":\"Mohammad Urfan, Prakriti Rajput, Palak Mahajan, Shubham Sharma, Haroon Rashid Hakla, Verasis Kour, Bhubneshwari Khajuria, Rehana Chowdhary, Parveen Kumar Lehana, Namrata Karlupia, Pawanesh Abrol, Lam Son Phan Tran, Sikander Pal Choudhary\",\"doi\":\"10.34133/research.0491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Precise and timely detection of a crop's nutrient requirement will play a crucial role in assuring optimum plant growth and crop yield. The present study introduces a reliable deep learning platform called \\\"Deep Learning-Crop Platform\\\" (DL-CRoP) for the identification of some commercially grown plants and their nutrient requirements using leaf, stem, and root images using a convolutional neural network (CNN). It extracts intrinsic feature patterns through hierarchical mapping and provides remarkable outcomes in identification tasks. The DL-CRoP platform is trained on the plant image dataset, namely, Jammu University-Botany Image Database (JU-BID), available at https://github.com/urfanbutt. The findings demonstrate implementation of DL-CRoP-cases A (uses shoot images) and B (uses leaf images) for species identification for <i>Solanum lycopersicum</i> (tomato), <i>Vigna radiata</i> (Vigna), and <i>Zea mays</i> (maize), and cases C (uses leaf images) and D (uses root images) for diagnosis of nitrogen deficiency in maize. The platform achieved a higher rate of accuracy at 80-20, 70-30, and 60-40 splits for all the case studies, compared with established algorithms such as random forest, K-nearest neighbor, support vector machine, AdaBoost, and naïve Bayes. It provides a higher accuracy rate in classification parameters like recall, precision, and F1 score for cases A (90.45%), B (100%), and C (93.21), while a medium-level accuracy of 68.54% for case D. To further improve the accuracy of the platform in case study C, the CNN was modified including a multi-head attention (MHA) block. It resulted in the enhancement of the accuracy of classifying the nitrogen deficiency above 95%. The platform could play an important role in evaluating the health status of crop plants along with a role in precise identification of species. It may be used as a better module for precision crop cultivation under limited nutrient conditions.</p>\",\"PeriodicalId\":21120,\"journal\":{\"name\":\"Research\",\"volume\":\"7 \",\"pages\":\"0491\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450475/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.34133/research.0491\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0491","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
The Deep Learning-Crop Platform (DL-CRoP): For Species-Level Identification and Nutrient Status of Agricultural Crops.
Precise and timely detection of a crop's nutrient requirement will play a crucial role in assuring optimum plant growth and crop yield. The present study introduces a reliable deep learning platform called "Deep Learning-Crop Platform" (DL-CRoP) for the identification of some commercially grown plants and their nutrient requirements using leaf, stem, and root images using a convolutional neural network (CNN). It extracts intrinsic feature patterns through hierarchical mapping and provides remarkable outcomes in identification tasks. The DL-CRoP platform is trained on the plant image dataset, namely, Jammu University-Botany Image Database (JU-BID), available at https://github.com/urfanbutt. The findings demonstrate implementation of DL-CRoP-cases A (uses shoot images) and B (uses leaf images) for species identification for Solanum lycopersicum (tomato), Vigna radiata (Vigna), and Zea mays (maize), and cases C (uses leaf images) and D (uses root images) for diagnosis of nitrogen deficiency in maize. The platform achieved a higher rate of accuracy at 80-20, 70-30, and 60-40 splits for all the case studies, compared with established algorithms such as random forest, K-nearest neighbor, support vector machine, AdaBoost, and naïve Bayes. It provides a higher accuracy rate in classification parameters like recall, precision, and F1 score for cases A (90.45%), B (100%), and C (93.21), while a medium-level accuracy of 68.54% for case D. To further improve the accuracy of the platform in case study C, the CNN was modified including a multi-head attention (MHA) block. It resulted in the enhancement of the accuracy of classifying the nitrogen deficiency above 95%. The platform could play an important role in evaluating the health status of crop plants along with a role in precise identification of species. It may be used as a better module for precision crop cultivation under limited nutrient conditions.
期刊介绍:
Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe.
Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.