全基因组范围内 m6A 相关基因家族的鉴定及 TdFIP37 在野生小麦盐胁迫中的参与。

IF 5.3 2区 生物学 Q1 PLANT SCIENCES
Jiaqian Huang, Yanze Jia, Yan Pan, Huiyuan Lin, Shuzuo Lv, Mohsin Nawaz, Baoxing Song, Xiaojun Nie
{"title":"全基因组范围内 m6A 相关基因家族的鉴定及 TdFIP37 在野生小麦盐胁迫中的参与。","authors":"Jiaqian Huang, Yanze Jia, Yan Pan, Huiyuan Lin, Shuzuo Lv, Mohsin Nawaz, Baoxing Song, Xiaojun Nie","doi":"10.1007/s00299-024-03339-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>The genomic organization, phylogenetic relationship, expression patterns, and genetic variations of m6A-related genes were systematically investigated in wild emmer wheat and the function of TdFIP37 regulating salt tolerance was preliminarily determined. m6A modification is one of the most abundant and crucial RNA modifications in eukaryotics, playing the indispensable role in growth and development as well as stress response in plants. However, its significance in wild emmer wheat remains elusive. Here, a genome-wide search of m6A-related genes was conducted in wild emmer wheat to obtain 64 candidates, including 21 writers, 17 erasers, and 26 readers. Phylogenetic and collinearity analysis demonstrated that segmental duplication and polyploidization contributed mainly to the expansion of m6A-related genes in wild emmer. A number of cis-acting elements involving in stress and hormonal regulation were found in the promoter regions of them, such as MBS, LTR, and ABRE. Genetic variation of them was also investigated using resequencing data and obvious genetic bottleneck was occurred on them during wild emmer wheat domestication process. Furthermore, the salt-responsive candidates were investigated through RNA-seq data and qRT-PCR validation using the salt-tolerant and -sensitive genotypes and the co-expression analysis showed that they played the hub role in regulating salt stress response. Finally, the loss-function mutant of Tdfip37 displayed the significantly higher salt-sensitive compared to WT and then RNA-seq analysis demonstrated that FIP37 mediated the MAPK pathway, hormone signal transduction, as well as transcription factor to regulate salt tolerance. This study provided the potential m6A genes for functional analysis, which will contribute to better understand the regulatory roles of m6A modification and also improve the salt tolerance from the perspective of epigenetic approach in emmer wheat and other crops.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"43 11","pages":"254"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genome-wide identification of m6A-related gene family and the involvement of TdFIP37 in salt stress in wild emmer wheat.\",\"authors\":\"Jiaqian Huang, Yanze Jia, Yan Pan, Huiyuan Lin, Shuzuo Lv, Mohsin Nawaz, Baoxing Song, Xiaojun Nie\",\"doi\":\"10.1007/s00299-024-03339-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Key message: </strong>The genomic organization, phylogenetic relationship, expression patterns, and genetic variations of m6A-related genes were systematically investigated in wild emmer wheat and the function of TdFIP37 regulating salt tolerance was preliminarily determined. m6A modification is one of the most abundant and crucial RNA modifications in eukaryotics, playing the indispensable role in growth and development as well as stress response in plants. However, its significance in wild emmer wheat remains elusive. Here, a genome-wide search of m6A-related genes was conducted in wild emmer wheat to obtain 64 candidates, including 21 writers, 17 erasers, and 26 readers. Phylogenetic and collinearity analysis demonstrated that segmental duplication and polyploidization contributed mainly to the expansion of m6A-related genes in wild emmer. A number of cis-acting elements involving in stress and hormonal regulation were found in the promoter regions of them, such as MBS, LTR, and ABRE. Genetic variation of them was also investigated using resequencing data and obvious genetic bottleneck was occurred on them during wild emmer wheat domestication process. Furthermore, the salt-responsive candidates were investigated through RNA-seq data and qRT-PCR validation using the salt-tolerant and -sensitive genotypes and the co-expression analysis showed that they played the hub role in regulating salt stress response. Finally, the loss-function mutant of Tdfip37 displayed the significantly higher salt-sensitive compared to WT and then RNA-seq analysis demonstrated that FIP37 mediated the MAPK pathway, hormone signal transduction, as well as transcription factor to regulate salt tolerance. This study provided the potential m6A genes for functional analysis, which will contribute to better understand the regulatory roles of m6A modification and also improve the salt tolerance from the perspective of epigenetic approach in emmer wheat and other crops.</p>\",\"PeriodicalId\":20204,\"journal\":{\"name\":\"Plant Cell Reports\",\"volume\":\"43 11\",\"pages\":\"254\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Cell Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00299-024-03339-z\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00299-024-03339-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

关键信息:m6A修饰是真核生物中最丰富、最关键的RNA修饰之一,在植物的生长发育和胁迫响应中发挥着不可或缺的作用。然而,它在野生小麦中的意义仍然难以捉摸。在此,研究人员对野生小麦中的 m6A 相关基因进行了全基因组搜索,获得了 64 个候选基因,包括 21 个写入基因、17 个擦除基因和 26 个读出基因。系统发育和共线性分析表明,区段重复和多倍体化是野生珙桐中 m6A 相关基因扩增的主要原因。在这些基因的启动子区域发现了一些涉及胁迫和激素调控的顺式作用元件,如 MBS、LTR 和 ABRE。利用重测序数据还研究了它们的遗传变异,结果表明在野生珙桐的驯化过程中,它们出现了明显的遗传瓶颈。此外,通过 RNA-seq 数据和 qRT-PCR 验证,利用耐盐基因型和敏感基因型对盐胁迫候选基因进行了研究,共同表达分析表明它们在调控盐胁迫响应中起着枢纽作用。最后,Tdfip37功能缺失突变体的耐盐性明显高于WT,RNA-seq分析表明FIP37介导MAPK通路、激素信号转导和转录因子调控耐盐性。这项研究为功能分析提供了潜在的m6A基因,有助于更好地理解m6A修饰的调控作用,并从表观遗传学的角度提高小麦和其他作物的耐盐性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genome-wide identification of m6A-related gene family and the involvement of TdFIP37 in salt stress in wild emmer wheat.

Key message: The genomic organization, phylogenetic relationship, expression patterns, and genetic variations of m6A-related genes were systematically investigated in wild emmer wheat and the function of TdFIP37 regulating salt tolerance was preliminarily determined. m6A modification is one of the most abundant and crucial RNA modifications in eukaryotics, playing the indispensable role in growth and development as well as stress response in plants. However, its significance in wild emmer wheat remains elusive. Here, a genome-wide search of m6A-related genes was conducted in wild emmer wheat to obtain 64 candidates, including 21 writers, 17 erasers, and 26 readers. Phylogenetic and collinearity analysis demonstrated that segmental duplication and polyploidization contributed mainly to the expansion of m6A-related genes in wild emmer. A number of cis-acting elements involving in stress and hormonal regulation were found in the promoter regions of them, such as MBS, LTR, and ABRE. Genetic variation of them was also investigated using resequencing data and obvious genetic bottleneck was occurred on them during wild emmer wheat domestication process. Furthermore, the salt-responsive candidates were investigated through RNA-seq data and qRT-PCR validation using the salt-tolerant and -sensitive genotypes and the co-expression analysis showed that they played the hub role in regulating salt stress response. Finally, the loss-function mutant of Tdfip37 displayed the significantly higher salt-sensitive compared to WT and then RNA-seq analysis demonstrated that FIP37 mediated the MAPK pathway, hormone signal transduction, as well as transcription factor to regulate salt tolerance. This study provided the potential m6A genes for functional analysis, which will contribute to better understand the regulatory roles of m6A modification and also improve the salt tolerance from the perspective of epigenetic approach in emmer wheat and other crops.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Cell Reports
Plant Cell Reports 生物-植物科学
CiteScore
10.80
自引率
1.60%
发文量
135
审稿时长
3.2 months
期刊介绍: Plant Cell Reports publishes original, peer-reviewed articles on new advances in all aspects of plant cell science, plant genetics and molecular biology. Papers selected for publication contribute significant new advances to clearly identified technological problems and/or biological questions. The articles will prove relevant beyond the narrow topic of interest to a readership with broad scientific background. The coverage includes such topics as: - genomics and genetics - metabolism - cell biology - abiotic and biotic stress - phytopathology - gene transfer and expression - molecular pharming - systems biology - nanobiotechnology - genome editing - phenomics and synthetic biology The journal also publishes opinion papers, review and focus articles on the latest developments and new advances in research and technology in plant molecular biology and biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信