海洋萃取化合物对延缓阿尔茨海默氏症发展的潜在益处。

IF 1.3 3区 医学 Q3 CHEMISTRY, APPLIED
Aditya Malan, Manjusha Choudhary, Prabhjeet Kaur Bamrah, Dipender Kumari
{"title":"海洋萃取化合物对延缓阿尔茨海默氏症发展的潜在益处。","authors":"Aditya Malan, Manjusha Choudhary, Prabhjeet Kaur Bamrah, Dipender Kumari","doi":"10.1080/10286020.2024.2409869","DOIUrl":null,"url":null,"abstract":"<p><p>The incidence of Alzheimer's is increasing and poses a significant social and economic burden. The pathogenesis involved in the expansion of AD includes neuronal oxidative damage, tau phosphorylation, amyloid beta aggregation, neuroinflammation, etc. Despite enormous efforts, there is currently no effective treatment or cure for this condition in the allopathic system. Marine compounds are appealing options and have a strong neuroprotective impact. Marine-derived compounds from sponges, algae, and marine invertebrates can be used for neuroprotection, with fewer adverse effects than synthetic drugs. Various compounds such as bryostatin-1, docosahexaenoic acid, spirolides, and astaxanthin, GV-971, have demonstrated outstanding activity and bioavailability.</p>","PeriodicalId":15180,"journal":{"name":"Journal of Asian Natural Products Research","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential benefits of marine-derived compounds for slowing the advancement of Alzheimer's disease.\",\"authors\":\"Aditya Malan, Manjusha Choudhary, Prabhjeet Kaur Bamrah, Dipender Kumari\",\"doi\":\"10.1080/10286020.2024.2409869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The incidence of Alzheimer's is increasing and poses a significant social and economic burden. The pathogenesis involved in the expansion of AD includes neuronal oxidative damage, tau phosphorylation, amyloid beta aggregation, neuroinflammation, etc. Despite enormous efforts, there is currently no effective treatment or cure for this condition in the allopathic system. Marine compounds are appealing options and have a strong neuroprotective impact. Marine-derived compounds from sponges, algae, and marine invertebrates can be used for neuroprotection, with fewer adverse effects than synthetic drugs. Various compounds such as bryostatin-1, docosahexaenoic acid, spirolides, and astaxanthin, GV-971, have demonstrated outstanding activity and bioavailability.</p>\",\"PeriodicalId\":15180,\"journal\":{\"name\":\"Journal of Asian Natural Products Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Asian Natural Products Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10286020.2024.2409869\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Asian Natural Products Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10286020.2024.2409869","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

阿尔茨海默氏症的发病率在不断上升,给社会和经济造成了巨大负担。阿兹海默症的发病机制包括神经元氧化损伤、tau 磷酸化、淀粉样蛋白 beta 聚集、神经炎症等。尽管付出了巨大的努力,但目前在对抗疗法系统中还没有有效的治疗或治愈方法。海洋化合物是很有吸引力的选择,具有很强的神经保护作用。从海绵、藻类和海洋无脊椎动物中提取的海洋化合物可用于神经保护,与合成药物相比,其不良反应较少。各种化合物,如白僵菌素-1、二十二碳六烯酸、螺内酯和虾青素 GV-971 等,都已证明具有出色的活性和生物利用度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Potential benefits of marine-derived compounds for slowing the advancement of Alzheimer's disease.

The incidence of Alzheimer's is increasing and poses a significant social and economic burden. The pathogenesis involved in the expansion of AD includes neuronal oxidative damage, tau phosphorylation, amyloid beta aggregation, neuroinflammation, etc. Despite enormous efforts, there is currently no effective treatment or cure for this condition in the allopathic system. Marine compounds are appealing options and have a strong neuroprotective impact. Marine-derived compounds from sponges, algae, and marine invertebrates can be used for neuroprotection, with fewer adverse effects than synthetic drugs. Various compounds such as bryostatin-1, docosahexaenoic acid, spirolides, and astaxanthin, GV-971, have demonstrated outstanding activity and bioavailability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
47
审稿时长
2.3 months
期刊介绍: The Journal of Asian Natural Products Research (JANPR) publishes chemical and pharmaceutical studies in the English language in the field of natural product research on Asian ethnic medicine. The journal publishes work from scientists in Asian countries, e.g. China, Japan, Korea and India, including contributions from other countries concerning natural products of Asia. The journal is chemistry-orientated. Major fields covered are: isolation and structural elucidation of natural constituents (including those for non-medical uses), synthesis and transformation (including biosynthesis and biotransformation) of natural products, pharmacognosy, and allied topics. Biological evaluation of crude extracts are acceptable only as supporting data for pure isolates with well-characterized structures. All published research articles in this journal have undergone rigorous peer review, based on initial editor screening and anonymized refereeing by at least two expert referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信