Anna G. Golovkina , Oleg R. Karpukhin , Anastasia V. Kravchenko , Evgeniia M. Khairullina , Ilya I. Tumkin , Andrey V. Kalinichev
{"title":"用于圆珠笔墨水聚类和老化调查的数字色彩分析和机器学习。","authors":"Anna G. Golovkina , Oleg R. Karpukhin , Anastasia V. Kravchenko , Evgeniia M. Khairullina , Ilya I. Tumkin , Andrey V. Kalinichev","doi":"10.1016/j.forsciint.2024.112236","DOIUrl":null,"url":null,"abstract":"<div><div>Fraudulent activities often involve document manipulation, which poses a significant challenge to forensic science. To address this issue, a novel method was developed that combines intended artificial UV pre-degradation, digital color analysis (DCA) of stroke images, and various machine learning (ML) models. This method can cluster blue ballpoint pen inks and predict their photodegradation time. The results of the study indicate that the k-shape clustering method is highly effective in differentiating between inks based on their degradation curve patterns and HSV or RBS color features, aligning well with results from chromatography analyses. Furthermore, the random forest regression model demonstrated superior performance in predicting age, exhibiting the highest coefficients of determination. The DCA-ML method is a straightforward, cost-effective, and highly accurate solution for clustering blue pen inks. Using photodegradation curves to predict document age could eliminate the need for conventional physicochemical analysis techniques.</div></div>","PeriodicalId":12341,"journal":{"name":"Forensic science international","volume":"364 ","pages":"Article 112236"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Digital color analysis and machine learning for ballpoint pen ink clustering and aging investigation\",\"authors\":\"Anna G. Golovkina , Oleg R. Karpukhin , Anastasia V. Kravchenko , Evgeniia M. Khairullina , Ilya I. Tumkin , Andrey V. Kalinichev\",\"doi\":\"10.1016/j.forsciint.2024.112236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fraudulent activities often involve document manipulation, which poses a significant challenge to forensic science. To address this issue, a novel method was developed that combines intended artificial UV pre-degradation, digital color analysis (DCA) of stroke images, and various machine learning (ML) models. This method can cluster blue ballpoint pen inks and predict their photodegradation time. The results of the study indicate that the k-shape clustering method is highly effective in differentiating between inks based on their degradation curve patterns and HSV or RBS color features, aligning well with results from chromatography analyses. Furthermore, the random forest regression model demonstrated superior performance in predicting age, exhibiting the highest coefficients of determination. The DCA-ML method is a straightforward, cost-effective, and highly accurate solution for clustering blue pen inks. Using photodegradation curves to predict document age could eliminate the need for conventional physicochemical analysis techniques.</div></div>\",\"PeriodicalId\":12341,\"journal\":{\"name\":\"Forensic science international\",\"volume\":\"364 \",\"pages\":\"Article 112236\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forensic science international\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0379073824003189\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, LEGAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic science international","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379073824003189","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
Digital color analysis and machine learning for ballpoint pen ink clustering and aging investigation
Fraudulent activities often involve document manipulation, which poses a significant challenge to forensic science. To address this issue, a novel method was developed that combines intended artificial UV pre-degradation, digital color analysis (DCA) of stroke images, and various machine learning (ML) models. This method can cluster blue ballpoint pen inks and predict their photodegradation time. The results of the study indicate that the k-shape clustering method is highly effective in differentiating between inks based on their degradation curve patterns and HSV or RBS color features, aligning well with results from chromatography analyses. Furthermore, the random forest regression model demonstrated superior performance in predicting age, exhibiting the highest coefficients of determination. The DCA-ML method is a straightforward, cost-effective, and highly accurate solution for clustering blue pen inks. Using photodegradation curves to predict document age could eliminate the need for conventional physicochemical analysis techniques.
期刊介绍:
Forensic Science International is the flagship journal in the prestigious Forensic Science International family, publishing the most innovative, cutting-edge, and influential contributions across the forensic sciences. Fields include: forensic pathology and histochemistry, chemistry, biochemistry and toxicology, biology, serology, odontology, psychiatry, anthropology, digital forensics, the physical sciences, firearms, and document examination, as well as investigations of value to public health in its broadest sense, and the important marginal area where science and medicine interact with the law.
The journal publishes:
Case Reports
Commentaries
Letters to the Editor
Original Research Papers (Regular Papers)
Rapid Communications
Review Articles
Technical Notes.