Xiaoyang Zhang , Xi Wang , Jianlu Qu , Yao Zhang , Cunhao Li , Wei Wu , Wenlong Li
{"title":"声共振技术和质量设计方法促进了坚固耐用的四氢化萘纳米给药系统的开发。","authors":"Xiaoyang Zhang , Xi Wang , Jianlu Qu , Yao Zhang , Cunhao Li , Wei Wu , Wenlong Li","doi":"10.1016/j.ejpb.2024.114522","DOIUrl":null,"url":null,"abstract":"<div><div>The aim of this study was to develop a sufficiently robust tetrandrine (Tet) nano-delivery system using acoustic resonance (AR) technology and freeze-drying technology. This system can effectively improve the solubility and dissolution properties of Tet, along with high stability and scale-up adaptability. Firstly, 54 stabilizers were screened simultaneously in a high-throughput manner with the help of AR technology to fully explore the optimal prescription space of tetrandrine nanosuspension (Tet-NS). The Plackett-Burman design was used to screen for critical variables severely affecting the quality of Tet-NS. The Box-Behnken design was used to investigate and optimize critical variables to obtain optimal nanosuspensions. The optimal prescription was successfully scaled up by 100 times, which was the initial exploration of its commercial scale production. Solidification studies have shown that formulations with 2.44% fructose as the cryoprotectant have excellent redispersibility. Compared with pure Tet, Tet in Tet-NS showed a significant increase in solubility and dissolution rate in water. Fourier transform infrared (FT-IR) demonstrated that no significant interactions occurred between the drug and excipients in Tet-NS. Powder x-ray diffraction analysis (PXRD) indicated that some of the Tet transformed into amorphous state during the preparation process. In short-term stability study, Tet-NS successfully maintained its physical stability. In summary, under the guidance of the QbD concept, this study rapidly developed Tet-NS using acoustic resonance technology, which can effectively improve the solubility and dissolution properties of Tet. During the development of Tet-NS, AR technology has demonstrated high particle size reduction capability, the ability to process multiple sets of formulations in parallel, and excellent scale-up capability. Meanwhile, the method and concept of this study are not limited to Tet, but also applicable to other poorly water-soluble drugs.</div></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"204 ","pages":"Article 114522"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acoustic resonance technology and quality by design approach facilitate the development of the robust tetrandrine nano-delivery system\",\"authors\":\"Xiaoyang Zhang , Xi Wang , Jianlu Qu , Yao Zhang , Cunhao Li , Wei Wu , Wenlong Li\",\"doi\":\"10.1016/j.ejpb.2024.114522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The aim of this study was to develop a sufficiently robust tetrandrine (Tet) nano-delivery system using acoustic resonance (AR) technology and freeze-drying technology. This system can effectively improve the solubility and dissolution properties of Tet, along with high stability and scale-up adaptability. Firstly, 54 stabilizers were screened simultaneously in a high-throughput manner with the help of AR technology to fully explore the optimal prescription space of tetrandrine nanosuspension (Tet-NS). The Plackett-Burman design was used to screen for critical variables severely affecting the quality of Tet-NS. The Box-Behnken design was used to investigate and optimize critical variables to obtain optimal nanosuspensions. The optimal prescription was successfully scaled up by 100 times, which was the initial exploration of its commercial scale production. Solidification studies have shown that formulations with 2.44% fructose as the cryoprotectant have excellent redispersibility. Compared with pure Tet, Tet in Tet-NS showed a significant increase in solubility and dissolution rate in water. Fourier transform infrared (FT-IR) demonstrated that no significant interactions occurred between the drug and excipients in Tet-NS. Powder x-ray diffraction analysis (PXRD) indicated that some of the Tet transformed into amorphous state during the preparation process. In short-term stability study, Tet-NS successfully maintained its physical stability. In summary, under the guidance of the QbD concept, this study rapidly developed Tet-NS using acoustic resonance technology, which can effectively improve the solubility and dissolution properties of Tet. During the development of Tet-NS, AR technology has demonstrated high particle size reduction capability, the ability to process multiple sets of formulations in parallel, and excellent scale-up capability. Meanwhile, the method and concept of this study are not limited to Tet, but also applicable to other poorly water-soluble drugs.</div></div>\",\"PeriodicalId\":12024,\"journal\":{\"name\":\"European Journal of Pharmaceutics and Biopharmaceutics\",\"volume\":\"204 \",\"pages\":\"Article 114522\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Pharmaceutics and Biopharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0939641124003485\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutics and Biopharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939641124003485","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Acoustic resonance technology and quality by design approach facilitate the development of the robust tetrandrine nano-delivery system
The aim of this study was to develop a sufficiently robust tetrandrine (Tet) nano-delivery system using acoustic resonance (AR) technology and freeze-drying technology. This system can effectively improve the solubility and dissolution properties of Tet, along with high stability and scale-up adaptability. Firstly, 54 stabilizers were screened simultaneously in a high-throughput manner with the help of AR technology to fully explore the optimal prescription space of tetrandrine nanosuspension (Tet-NS). The Plackett-Burman design was used to screen for critical variables severely affecting the quality of Tet-NS. The Box-Behnken design was used to investigate and optimize critical variables to obtain optimal nanosuspensions. The optimal prescription was successfully scaled up by 100 times, which was the initial exploration of its commercial scale production. Solidification studies have shown that formulations with 2.44% fructose as the cryoprotectant have excellent redispersibility. Compared with pure Tet, Tet in Tet-NS showed a significant increase in solubility and dissolution rate in water. Fourier transform infrared (FT-IR) demonstrated that no significant interactions occurred between the drug and excipients in Tet-NS. Powder x-ray diffraction analysis (PXRD) indicated that some of the Tet transformed into amorphous state during the preparation process. In short-term stability study, Tet-NS successfully maintained its physical stability. In summary, under the guidance of the QbD concept, this study rapidly developed Tet-NS using acoustic resonance technology, which can effectively improve the solubility and dissolution properties of Tet. During the development of Tet-NS, AR technology has demonstrated high particle size reduction capability, the ability to process multiple sets of formulations in parallel, and excellent scale-up capability. Meanwhile, the method and concept of this study are not limited to Tet, but also applicable to other poorly water-soluble drugs.
期刊介绍:
The European Journal of Pharmaceutics and Biopharmaceutics provides a medium for the publication of novel, innovative and hypothesis-driven research from the areas of Pharmaceutics and Biopharmaceutics.
Topics covered include for example:
Design and development of drug delivery systems for pharmaceuticals and biopharmaceuticals (small molecules, proteins, nucleic acids)
Aspects of manufacturing process design
Biomedical aspects of drug product design
Strategies and formulations for controlled drug transport across biological barriers
Physicochemical aspects of drug product development
Novel excipients for drug product design
Drug delivery and controlled release systems for systemic and local applications
Nanomaterials for therapeutic and diagnostic purposes
Advanced therapy medicinal products
Medical devices supporting a distinct pharmacological effect.