Xuebin Ma, Kanaparedu P. C. Sekhar, Peiyu Zhang and Jiwei Cui
{"title":"用于生物医学应用的刺激响应型可注射水凝胶的研究进展。","authors":"Xuebin Ma, Kanaparedu P. C. Sekhar, Peiyu Zhang and Jiwei Cui","doi":"10.1039/D4BM00956H","DOIUrl":null,"url":null,"abstract":"<p >Injectable hydrogels, as a class of highly hydrated soft materials, are of interest for biomedicine due to their precise implantation and minimally invasive local drug delivery at the implantation site. The combination of <em>in situ</em> gelation ability and versatile therapeutic agent/cell loading capabilities makes injectable hydrogels ideal materials for drug delivery, tissue engineering, wound dressing and tumor treatment. In particular, the stimuli-responsive injectable hydrogels that can respond to different stimuli in and out of the body (<em>e.g.</em>, temperature, pH, redox conditions, light, magnetic fields, <em>etc</em>.) have significant advantages in biomedicine. Here, we summarize the design strategies, advantages, and recent developments of stimuli-responsive injectable hydrogels in different biomedical fields. Challenges and future perspectives of stimuli-responsive injectable hydrogels are also discussed and the future steps necessary to fulfill the potential of these promising materials are highlighted.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 21","pages":" 5468-5480"},"PeriodicalIF":5.8000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in stimuli-responsive injectable hydrogels for biomedical applications\",\"authors\":\"Xuebin Ma, Kanaparedu P. C. Sekhar, Peiyu Zhang and Jiwei Cui\",\"doi\":\"10.1039/D4BM00956H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Injectable hydrogels, as a class of highly hydrated soft materials, are of interest for biomedicine due to their precise implantation and minimally invasive local drug delivery at the implantation site. The combination of <em>in situ</em> gelation ability and versatile therapeutic agent/cell loading capabilities makes injectable hydrogels ideal materials for drug delivery, tissue engineering, wound dressing and tumor treatment. In particular, the stimuli-responsive injectable hydrogels that can respond to different stimuli in and out of the body (<em>e.g.</em>, temperature, pH, redox conditions, light, magnetic fields, <em>etc</em>.) have significant advantages in biomedicine. Here, we summarize the design strategies, advantages, and recent developments of stimuli-responsive injectable hydrogels in different biomedical fields. Challenges and future perspectives of stimuli-responsive injectable hydrogels are also discussed and the future steps necessary to fulfill the potential of these promising materials are highlighted.</p>\",\"PeriodicalId\":65,\"journal\":{\"name\":\"Biomaterials Science\",\"volume\":\" 21\",\"pages\":\" 5468-5480\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/bm/d4bm00956h\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/bm/d4bm00956h","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Advances in stimuli-responsive injectable hydrogels for biomedical applications
Injectable hydrogels, as a class of highly hydrated soft materials, are of interest for biomedicine due to their precise implantation and minimally invasive local drug delivery at the implantation site. The combination of in situ gelation ability and versatile therapeutic agent/cell loading capabilities makes injectable hydrogels ideal materials for drug delivery, tissue engineering, wound dressing and tumor treatment. In particular, the stimuli-responsive injectable hydrogels that can respond to different stimuli in and out of the body (e.g., temperature, pH, redox conditions, light, magnetic fields, etc.) have significant advantages in biomedicine. Here, we summarize the design strategies, advantages, and recent developments of stimuli-responsive injectable hydrogels in different biomedical fields. Challenges and future perspectives of stimuli-responsive injectable hydrogels are also discussed and the future steps necessary to fulfill the potential of these promising materials are highlighted.
期刊介绍:
Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.