用于过氧化物纳米晶体高密度光图案化的可交联配体。

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Woan Yuann Evon Ong, Yong Zheng Daniel Tan, Li Jun Lim, Truong Giang Hoang, Zhi-Kuang Tan
{"title":"用于过氧化物纳米晶体高密度光图案化的可交联配体。","authors":"Woan Yuann Evon Ong, Yong Zheng Daniel Tan, Li Jun Lim, Truong Giang Hoang, Zhi-Kuang Tan","doi":"10.1002/adma.202409564","DOIUrl":null,"url":null,"abstract":"<p><p>Perovskite nanocrystals (PNCs) are promising luminescent materials for electronic color displays due to their high luminescence efficiency, widely-tunable emission wavelengths, and narrow emission linewidth. Their application in emerging display technologies necessitates precise micron-scale patterning while maintaining good optical performance. Although photolithography is a well-established micro-patterning technique in the industry, conventional processes are incompatible with PNCs as the use of polar solvents can damage the ionic PNCs, causing severe luminescence quenching. Here, we report the rational design and synthesis of a new bidentate photo-crosslinkable ligand for the direct photo-patterning of PNCs. Each ligand contains two photosensitive acrylate groups and two carboxylate groups, and is introduced to the PNCs via an entropy-driven ligand exchange process. In a close-packed thin film, the acrylate ligands photo-polymerize and crosslink under ultraviolet light, rendering the PNCs insoluble in developing solvents. A high-density crosslinked PNC film with an optical density of 1.1 is attained at 1.4 µm thickness, surpassing industry requirements on the absorption coefficient. Micron-scale patterning is further demonstrated using direct laser writing, producing well-defined 20 µm features. This study thus offers an effective and versatile approach for micro-patterning PNCs, and may also be broadly applicable to other nanomaterial systems.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crosslinkable Ligands for High-Density Photo-Patterning of Perovskite Nanocrystals.\",\"authors\":\"Woan Yuann Evon Ong, Yong Zheng Daniel Tan, Li Jun Lim, Truong Giang Hoang, Zhi-Kuang Tan\",\"doi\":\"10.1002/adma.202409564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Perovskite nanocrystals (PNCs) are promising luminescent materials for electronic color displays due to their high luminescence efficiency, widely-tunable emission wavelengths, and narrow emission linewidth. Their application in emerging display technologies necessitates precise micron-scale patterning while maintaining good optical performance. Although photolithography is a well-established micro-patterning technique in the industry, conventional processes are incompatible with PNCs as the use of polar solvents can damage the ionic PNCs, causing severe luminescence quenching. Here, we report the rational design and synthesis of a new bidentate photo-crosslinkable ligand for the direct photo-patterning of PNCs. Each ligand contains two photosensitive acrylate groups and two carboxylate groups, and is introduced to the PNCs via an entropy-driven ligand exchange process. In a close-packed thin film, the acrylate ligands photo-polymerize and crosslink under ultraviolet light, rendering the PNCs insoluble in developing solvents. A high-density crosslinked PNC film with an optical density of 1.1 is attained at 1.4 µm thickness, surpassing industry requirements on the absorption coefficient. Micron-scale patterning is further demonstrated using direct laser writing, producing well-defined 20 µm features. This study thus offers an effective and versatile approach for micro-patterning PNCs, and may also be broadly applicable to other nanomaterial systems.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202409564\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202409564","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

过氧化物纳米晶体(PNCs)具有发光效率高、发射波长可调、发射线宽窄等特点,是一种很有前途的电子彩色显示器发光材料。要将其应用于新兴显示技术,就必须在保持良好光学性能的同时进行精确的微米级图案化。虽然光刻技术是业内成熟的微图案技术,但传统工艺与 PNC 不兼容,因为使用极性溶剂会破坏离子型 PNC,导致严重的发光淬灭。在此,我们报告了一种用于直接光图案化 PNC 的新型双齿光交联配体的合理设计与合成。每种配体都包含两个光敏丙烯酸酯基团和两个羧酸基团,并通过熵驱动的配体交换过程引入到 PNC 中。在紧密堆积的薄膜中,丙烯酸酯配体在紫外线下发生光聚合和交联,使 PNCs 不溶于显影溶剂。1.4 微米厚度的高密度交联 PNC 薄膜的光密度达到 1.1,超过了行业对吸收系数的要求。利用直接激光写入技术进一步展示了微米尺度的图案化,产生了清晰的 20 微米特征。因此,这项研究为 PNC 的微图案化提供了一种有效的多功能方法,也可广泛应用于其他纳米材料系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Crosslinkable Ligands for High-Density Photo-Patterning of Perovskite Nanocrystals.

Crosslinkable Ligands for High-Density Photo-Patterning of Perovskite Nanocrystals.

Perovskite nanocrystals (PNCs) are promising luminescent materials for electronic color displays due to their high luminescence efficiency, widely-tunable emission wavelengths, and narrow emission linewidth. Their application in emerging display technologies necessitates precise micron-scale patterning while maintaining good optical performance. Although photolithography is a well-established micro-patterning technique in the industry, conventional processes are incompatible with PNCs as the use of polar solvents can damage the ionic PNCs, causing severe luminescence quenching. Here, we report the rational design and synthesis of a new bidentate photo-crosslinkable ligand for the direct photo-patterning of PNCs. Each ligand contains two photosensitive acrylate groups and two carboxylate groups, and is introduced to the PNCs via an entropy-driven ligand exchange process. In a close-packed thin film, the acrylate ligands photo-polymerize and crosslink under ultraviolet light, rendering the PNCs insoluble in developing solvents. A high-density crosslinked PNC film with an optical density of 1.1 is attained at 1.4 µm thickness, surpassing industry requirements on the absorption coefficient. Micron-scale patterning is further demonstrated using direct laser writing, producing well-defined 20 µm features. This study thus offers an effective and versatile approach for micro-patterning PNCs, and may also be broadly applicable to other nanomaterial systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信