不对称配位的铜双原子位点实现了选择性二氧化碳电还原成乙醇。

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Advanced Materials Pub Date : 2024-11-01 Epub Date: 2024-10-06 DOI:10.1002/adma.202409797
Changli Chen, Zhiyi Sun, Gangzhi Qin, Bingchao Wang, Minggang Liu, Qingru Liang, Xinyu Li, Runzhuo Pang, Yingshu Guo, Yujing Li, Wenxing Chen
{"title":"不对称配位的铜双原子位点实现了选择性二氧化碳电还原成乙醇。","authors":"Changli Chen, Zhiyi Sun, Gangzhi Qin, Bingchao Wang, Minggang Liu, Qingru Liang, Xinyu Li, Runzhuo Pang, Yingshu Guo, Yujing Li, Wenxing Chen","doi":"10.1002/adma.202409797","DOIUrl":null,"url":null,"abstract":"<p><p>Electrochemical reduction of CO<sub>2</sub> (CO<sub>2</sub>RR) to value-added liquid fuels is a highly attractive solution for carbon-neutral recycling, especially for C<sub>2+</sub> products. However, the selectivity control to preferable products is a great challenge due to the complex multi-electron proton transfer process. In this work, a series of Cu atomic dispersed catalysts are synthesized by regulating the coordination structures to optimize the CO<sub>2</sub>RR selectivity. Cu<sub>2</sub>-SNC catalyst with a uniquely asymmetrical coordinated CuN<sub>2</sub>-CuNS site shows high ethanol selective with the FE of 62.6% at -0.8 V versus RHE and 60.2% at 0.9 V versus RHE in H-Cell and Flow-Cell test, respectively. Besides, the nest-like structure of Cu<sub>2</sub>-SNC is beneficial to the mass transfer process and the selection of catalytic products. In situ experiments and theory calculations reveal the reaction mechanisms of such high selectivity of ethanol. The S atoms weaken the bonding ability of the adjacent Cu to the carbon atom, which accelerates the selection from *CHCOH to generate *CHCHOH, resulting in the high selectivity of ethanol. This work indicates a promising strategy in the rational design of asymmetrically coordinated single, dual, or tri-atom catalysts and provides a candidate material for CO<sub>2</sub>RR to produce ethanol.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":" ","pages":"e2409797"},"PeriodicalIF":27.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymmetrically Coordinated Cu Dual-Atom-Sites Enables Selective CO<sub>2</sub> Electroreduction to Ethanol.\",\"authors\":\"Changli Chen, Zhiyi Sun, Gangzhi Qin, Bingchao Wang, Minggang Liu, Qingru Liang, Xinyu Li, Runzhuo Pang, Yingshu Guo, Yujing Li, Wenxing Chen\",\"doi\":\"10.1002/adma.202409797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electrochemical reduction of CO<sub>2</sub> (CO<sub>2</sub>RR) to value-added liquid fuels is a highly attractive solution for carbon-neutral recycling, especially for C<sub>2+</sub> products. However, the selectivity control to preferable products is a great challenge due to the complex multi-electron proton transfer process. In this work, a series of Cu atomic dispersed catalysts are synthesized by regulating the coordination structures to optimize the CO<sub>2</sub>RR selectivity. Cu<sub>2</sub>-SNC catalyst with a uniquely asymmetrical coordinated CuN<sub>2</sub>-CuNS site shows high ethanol selective with the FE of 62.6% at -0.8 V versus RHE and 60.2% at 0.9 V versus RHE in H-Cell and Flow-Cell test, respectively. Besides, the nest-like structure of Cu<sub>2</sub>-SNC is beneficial to the mass transfer process and the selection of catalytic products. In situ experiments and theory calculations reveal the reaction mechanisms of such high selectivity of ethanol. The S atoms weaken the bonding ability of the adjacent Cu to the carbon atom, which accelerates the selection from *CHCOH to generate *CHCHOH, resulting in the high selectivity of ethanol. This work indicates a promising strategy in the rational design of asymmetrically coordinated single, dual, or tri-atom catalysts and provides a candidate material for CO<sub>2</sub>RR to produce ethanol.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\" \",\"pages\":\"e2409797\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202409797\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202409797","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

将二氧化碳(CO2RR)电化学还原为高附加值液体燃料是一种极具吸引力的碳中性回收解决方案,尤其是对 C2+ 产品而言。然而,由于存在复杂的多电子质子转移过程,如何控制优选产物的选择性是一个巨大的挑战。本研究通过调节配位结构合成了一系列铜原子分散催化剂,以优化 CO2RR 的选择性。具有独特非对称配位 CuN2-CuNS 位点的 Cu2-SNC 催化剂显示出较高的乙醇选择性,在 H-Cell 和 Flow-Cell 试验中,-0.8 V 时相对于 RHE 的 FE 分别为 62.6%,0.9 V 时相对于 RHE 的 FE 为 60.2%。此外,Cu2-SNC 的巢状结构有利于传质过程和催化产物的选择。原位实验和理论计算揭示了乙醇如此高选择性的反应机理。S 原子削弱了相邻 Cu 与碳原子的成键能力,从而加速了从 *CHCOH 到生成 *CHCHOH 的选择过程,导致乙醇的高选择性。这项工作为合理设计不对称配位的单原子、双原子或三原子催化剂提供了一种可行的策略,并为 CO2RR 生产乙醇提供了一种候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Asymmetrically Coordinated Cu Dual-Atom-Sites Enables Selective CO<sub>2</sub> Electroreduction to Ethanol.

Asymmetrically Coordinated Cu Dual-Atom-Sites Enables Selective CO2 Electroreduction to Ethanol.

Electrochemical reduction of CO2 (CO2RR) to value-added liquid fuels is a highly attractive solution for carbon-neutral recycling, especially for C2+ products. However, the selectivity control to preferable products is a great challenge due to the complex multi-electron proton transfer process. In this work, a series of Cu atomic dispersed catalysts are synthesized by regulating the coordination structures to optimize the CO2RR selectivity. Cu2-SNC catalyst with a uniquely asymmetrical coordinated CuN2-CuNS site shows high ethanol selective with the FE of 62.6% at -0.8 V versus RHE and 60.2% at 0.9 V versus RHE in H-Cell and Flow-Cell test, respectively. Besides, the nest-like structure of Cu2-SNC is beneficial to the mass transfer process and the selection of catalytic products. In situ experiments and theory calculations reveal the reaction mechanisms of such high selectivity of ethanol. The S atoms weaken the bonding ability of the adjacent Cu to the carbon atom, which accelerates the selection from *CHCOH to generate *CHCHOH, resulting in the high selectivity of ethanol. This work indicates a promising strategy in the rational design of asymmetrically coordinated single, dual, or tri-atom catalysts and provides a candidate material for CO2RR to produce ethanol.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信