Zhihua Chen, Gan Zhan, Zhifan Jiang, Wencai Zhang, Zhibo Rao, Hua Wang, Jiehao Li
{"title":"通过斯图尔特并联机构实现对接机器人的自适应阻抗控制。","authors":"Zhihua Chen, Gan Zhan, Zhifan Jiang, Wencai Zhang, Zhibo Rao, Hua Wang, Jiehao Li","doi":"10.1016/j.isatra.2024.09.008","DOIUrl":null,"url":null,"abstract":"<p><p>This paper provides an adaptive impedance control strategy about docking robot, a locking mechanism scheme based on the Stewart platform developing for the problem of excessive collision contact force caused by external environmental interference during autonomous docking tasks of ground unmanned vehicles. First, the docking robot system was introduced, and an inverse kinematics model of the docking robot was constructed. Next, to solve the problem of excessive collision contact force during docking, we have designed an adaptive impedance control algorithm, which includes a steady-state error model of contact force, an adaptive compensation controller design, and system stability analysis, thus achieving active compliance control. Finally, some simulations and experiments were conducted on the docking robot. Compared with traditional impedance control, adaptive impedance control reduces docking collision contact force and achieves compliant control. In the future, the experimental results provide a new docking approach for autonomous docking of unmanned vehicles, and also serve as a reference for the development of intelligent vehicles.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive impedance control for docking robot via Stewart parallel mechanism.\",\"authors\":\"Zhihua Chen, Gan Zhan, Zhifan Jiang, Wencai Zhang, Zhibo Rao, Hua Wang, Jiehao Li\",\"doi\":\"10.1016/j.isatra.2024.09.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper provides an adaptive impedance control strategy about docking robot, a locking mechanism scheme based on the Stewart platform developing for the problem of excessive collision contact force caused by external environmental interference during autonomous docking tasks of ground unmanned vehicles. First, the docking robot system was introduced, and an inverse kinematics model of the docking robot was constructed. Next, to solve the problem of excessive collision contact force during docking, we have designed an adaptive impedance control algorithm, which includes a steady-state error model of contact force, an adaptive compensation controller design, and system stability analysis, thus achieving active compliance control. Finally, some simulations and experiments were conducted on the docking robot. Compared with traditional impedance control, adaptive impedance control reduces docking collision contact force and achieves compliant control. In the future, the experimental results provide a new docking approach for autonomous docking of unmanned vehicles, and also serve as a reference for the development of intelligent vehicles.</p>\",\"PeriodicalId\":94059,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\" \",\"pages\":\"1-12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.isatra.2024.09.008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2024.09.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive impedance control for docking robot via Stewart parallel mechanism.
This paper provides an adaptive impedance control strategy about docking robot, a locking mechanism scheme based on the Stewart platform developing for the problem of excessive collision contact force caused by external environmental interference during autonomous docking tasks of ground unmanned vehicles. First, the docking robot system was introduced, and an inverse kinematics model of the docking robot was constructed. Next, to solve the problem of excessive collision contact force during docking, we have designed an adaptive impedance control algorithm, which includes a steady-state error model of contact force, an adaptive compensation controller design, and system stability analysis, thus achieving active compliance control. Finally, some simulations and experiments were conducted on the docking robot. Compared with traditional impedance control, adaptive impedance control reduces docking collision contact force and achieves compliant control. In the future, the experimental results provide a new docking approach for autonomous docking of unmanned vehicles, and also serve as a reference for the development of intelligent vehicles.