在环境流行病学中考虑暴露测量误差的可扩展两阶段贝叶斯方法。

IF 1.8 3区 数学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Changwoo J Lee, Elaine Symanski, Amal Rammah, Dong Hun Kang, Philip K Hopke, Eun Sug Park
{"title":"在环境流行病学中考虑暴露测量误差的可扩展两阶段贝叶斯方法。","authors":"Changwoo J Lee, Elaine Symanski, Amal Rammah, Dong Hun Kang, Philip K Hopke, Eun Sug Park","doi":"10.1093/biostatistics/kxae038","DOIUrl":null,"url":null,"abstract":"<p><p>Accounting for exposure measurement errors has been recognized as a crucial problem in environmental epidemiology for over two decades. Bayesian hierarchical models offer a coherent probabilistic framework for evaluating associations between environmental exposures and health effects, which take into account exposure measurement errors introduced by uncertainty in the estimated exposure as well as spatial misalignment between the exposure and health outcome data. While two-stage Bayesian analyses are often regarded as a good alternative to fully Bayesian analyses when joint estimation is not feasible, there has been minimal research on how to properly propagate uncertainty from the first-stage exposure model to the second-stage health model, especially in the case of a large number of participant locations along with spatially correlated exposures. We propose a scalable two-stage Bayesian approach, called a sparse multivariate normal (sparse MVN) prior approach, based on the Vecchia approximation for assessing associations between exposure and health outcomes in environmental epidemiology. We compare its performance with existing approaches through simulation. Our sparse MVN prior approach shows comparable performance with the fully Bayesian approach, which is a gold standard but is impossible to implement in some cases. We investigate the association between source-specific exposures and pollutant (nitrogen dioxide [NO2])-specific exposures and birth weight of full-term infants born in 2012 in Harris County, Texas, using several approaches, including the newly developed method.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823266/pdf/","citationCount":"0","resultStr":"{\"title\":\"A scalable two-stage Bayesian approach accounting for exposure measurement error in environmental epidemiology.\",\"authors\":\"Changwoo J Lee, Elaine Symanski, Amal Rammah, Dong Hun Kang, Philip K Hopke, Eun Sug Park\",\"doi\":\"10.1093/biostatistics/kxae038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accounting for exposure measurement errors has been recognized as a crucial problem in environmental epidemiology for over two decades. Bayesian hierarchical models offer a coherent probabilistic framework for evaluating associations between environmental exposures and health effects, which take into account exposure measurement errors introduced by uncertainty in the estimated exposure as well as spatial misalignment between the exposure and health outcome data. While two-stage Bayesian analyses are often regarded as a good alternative to fully Bayesian analyses when joint estimation is not feasible, there has been minimal research on how to properly propagate uncertainty from the first-stage exposure model to the second-stage health model, especially in the case of a large number of participant locations along with spatially correlated exposures. We propose a scalable two-stage Bayesian approach, called a sparse multivariate normal (sparse MVN) prior approach, based on the Vecchia approximation for assessing associations between exposure and health outcomes in environmental epidemiology. We compare its performance with existing approaches through simulation. Our sparse MVN prior approach shows comparable performance with the fully Bayesian approach, which is a gold standard but is impossible to implement in some cases. We investigate the association between source-specific exposures and pollutant (nitrogen dioxide [NO2])-specific exposures and birth weight of full-term infants born in 2012 in Harris County, Texas, using several approaches, including the newly developed method.</p>\",\"PeriodicalId\":55357,\"journal\":{\"name\":\"Biostatistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823266/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biostatistics/kxae038\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxae038","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

二十多年来,暴露测量误差一直被认为是环境流行病学中的一个关键问题。贝叶斯分层模型为评估环境暴露与健康影响之间的关联提供了一个连贯的概率框架,该框架考虑到了估计暴露量的不确定性以及暴露量与健康结果数据之间的空间错位所带来的暴露测量误差。在联合估计不可行的情况下,两阶段贝叶斯分析通常被认为是完全贝叶斯分析的良好替代方法,但关于如何将不确定性从第一阶段暴露模型正确传播到第二阶段健康模型的研究却很少,尤其是在有大量参与地点和空间相关暴露的情况下。我们提出了一种可扩展的两阶段贝叶斯方法,称为稀疏多变量正态(稀疏 MVN)先验方法,该方法基于 Vecchia 近似,用于评估环境流行病学中暴露与健康结果之间的关联。我们通过模拟将其性能与现有方法进行了比较。我们的稀疏 MVN 先验方法与完全贝叶斯方法的性能相当,后者是黄金标准,但在某些情况下无法实施。我们使用几种方法(包括新开发的方法)调查了德克萨斯州哈里斯县 2012 年出生的足月婴儿的特定来源暴露和特定污染物(二氧化氮 [NO2])暴露与出生体重之间的关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A scalable two-stage Bayesian approach accounting for exposure measurement error in environmental epidemiology.

Accounting for exposure measurement errors has been recognized as a crucial problem in environmental epidemiology for over two decades. Bayesian hierarchical models offer a coherent probabilistic framework for evaluating associations between environmental exposures and health effects, which take into account exposure measurement errors introduced by uncertainty in the estimated exposure as well as spatial misalignment between the exposure and health outcome data. While two-stage Bayesian analyses are often regarded as a good alternative to fully Bayesian analyses when joint estimation is not feasible, there has been minimal research on how to properly propagate uncertainty from the first-stage exposure model to the second-stage health model, especially in the case of a large number of participant locations along with spatially correlated exposures. We propose a scalable two-stage Bayesian approach, called a sparse multivariate normal (sparse MVN) prior approach, based on the Vecchia approximation for assessing associations between exposure and health outcomes in environmental epidemiology. We compare its performance with existing approaches through simulation. Our sparse MVN prior approach shows comparable performance with the fully Bayesian approach, which is a gold standard but is impossible to implement in some cases. We investigate the association between source-specific exposures and pollutant (nitrogen dioxide [NO2])-specific exposures and birth weight of full-term infants born in 2012 in Harris County, Texas, using several approaches, including the newly developed method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biostatistics
Biostatistics 生物-数学与计算生物学
CiteScore
5.10
自引率
4.80%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Among the important scientific developments of the 20th century is the explosive growth in statistical reasoning and methods for application to studies of human health. Examples include developments in likelihood methods for inference, epidemiologic statistics, clinical trials, survival analysis, and statistical genetics. Substantive problems in public health and biomedical research have fueled the development of statistical methods, which in turn have improved our ability to draw valid inferences from data. The objective of Biostatistics is to advance statistical science and its application to problems of human health and disease, with the ultimate goal of advancing the public''s health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信