S. Cánovas, S. Heras, J. Romero-Aguirregomezcorta, A.A. Quintero-Moreno, J. Gadea, P. Coy, R. Romar
{"title":"使用辅助生殖技术出生的全生长母猪的代谢概况和血糖反应。","authors":"S. Cánovas, S. Heras, J. Romero-Aguirregomezcorta, A.A. Quintero-Moreno, J. Gadea, P. Coy, R. Romar","doi":"10.1016/j.theriogenology.2024.10.002","DOIUrl":null,"url":null,"abstract":"<div><div>The aim of the present work was to gain insight into the metabolism of pigs derived from assisted reproductive technologies during their adulthood. Approximately 4h after feeding, a blood sample was taken from 3.5 year old sows born by artificial insemination (AI group, n = 7) and transfer of in vitro produced embryos (IVP group, n = 11) to determine the physiological concentrations of the main biomarkers of carbohydrates (glucose and lactate), proteins (albumin, creatinine and urea) and lipids (cholesterol and triglycerides). Four weeks later, an oral glucose tolerance test (OGTT; 1.75g glucose/kg body weight) was performed after an overnight fast and 1h of water withdrawal. Blood samples were obtained prior (T = 0 min; fasting conditions) and 15, 30, 45, 60, 90, 120, 150, 180, 210 and 240 min after glucose intake. At each time point, glycemia was measured immediately using glucometer test strips, and serum was collected to determine the above metabolites along with insulin and glucagon. After OGTT, the area under the curve (AUC) between sampling times and homeostasis model assessment of insulin resistance (HOMA) indices were calculated. Under physiological conditions, the concentration of metabolites studied was similar between AI and IVP sows. In both groups, fasting decreased cholesterol and increased triglycerides and urea (<em>P</em> < 0.001). However, creatinine and lactate were similar in both groups under physiological and fasting conditions. The expected increase in albuminemia and decrease in glycaemia after fasting was only observed in IVP sows. OGTT revealed a different glucose curve pattern (monophasic in AI and biphasic in IVP group), a lower mean concentration of cholesterol, glucose, lactate, triglycerides in IVP compared to AI pigs (P < 0.01), and a higher mean concentration of albumin, creatinine and insulin in IVP compared to AI group (P < 0.05). On the contrary, no differences were found between groups for mean serum glucagon and urea levels, nor for glucose homeostasis indices HOMA-IR and HOMA-%B. The AUC differed between groups at several time points with larger AUC for creatinine, and smaller AUC for glucose, glucagon, and triglycerides, in IVP pigs than in AI pigs at 180–210 min (P < 0.05). In conclusion, under physiological conditions the metabolic profile of fully-grown AI and IVP sows is similar and within normal ranges. Glucose challenge revealed differences in metabolic and insulin responses between groups but with normal glucose tolerance in both cases.</div></div>","PeriodicalId":23131,"journal":{"name":"Theriogenology","volume":"230 ","pages":"Pages 314-321"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolic profile and glycemic response in fully-grown sows born using assisted reproductive technologies\",\"authors\":\"S. Cánovas, S. Heras, J. Romero-Aguirregomezcorta, A.A. Quintero-Moreno, J. Gadea, P. Coy, R. Romar\",\"doi\":\"10.1016/j.theriogenology.2024.10.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The aim of the present work was to gain insight into the metabolism of pigs derived from assisted reproductive technologies during their adulthood. Approximately 4h after feeding, a blood sample was taken from 3.5 year old sows born by artificial insemination (AI group, n = 7) and transfer of in vitro produced embryos (IVP group, n = 11) to determine the physiological concentrations of the main biomarkers of carbohydrates (glucose and lactate), proteins (albumin, creatinine and urea) and lipids (cholesterol and triglycerides). Four weeks later, an oral glucose tolerance test (OGTT; 1.75g glucose/kg body weight) was performed after an overnight fast and 1h of water withdrawal. Blood samples were obtained prior (T = 0 min; fasting conditions) and 15, 30, 45, 60, 90, 120, 150, 180, 210 and 240 min after glucose intake. At each time point, glycemia was measured immediately using glucometer test strips, and serum was collected to determine the above metabolites along with insulin and glucagon. After OGTT, the area under the curve (AUC) between sampling times and homeostasis model assessment of insulin resistance (HOMA) indices were calculated. Under physiological conditions, the concentration of metabolites studied was similar between AI and IVP sows. In both groups, fasting decreased cholesterol and increased triglycerides and urea (<em>P</em> < 0.001). However, creatinine and lactate were similar in both groups under physiological and fasting conditions. The expected increase in albuminemia and decrease in glycaemia after fasting was only observed in IVP sows. OGTT revealed a different glucose curve pattern (monophasic in AI and biphasic in IVP group), a lower mean concentration of cholesterol, glucose, lactate, triglycerides in IVP compared to AI pigs (P < 0.01), and a higher mean concentration of albumin, creatinine and insulin in IVP compared to AI group (P < 0.05). On the contrary, no differences were found between groups for mean serum glucagon and urea levels, nor for glucose homeostasis indices HOMA-IR and HOMA-%B. The AUC differed between groups at several time points with larger AUC for creatinine, and smaller AUC for glucose, glucagon, and triglycerides, in IVP pigs than in AI pigs at 180–210 min (P < 0.05). In conclusion, under physiological conditions the metabolic profile of fully-grown AI and IVP sows is similar and within normal ranges. Glucose challenge revealed differences in metabolic and insulin responses between groups but with normal glucose tolerance in both cases.</div></div>\",\"PeriodicalId\":23131,\"journal\":{\"name\":\"Theriogenology\",\"volume\":\"230 \",\"pages\":\"Pages 314-321\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theriogenology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0093691X24004047\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"REPRODUCTIVE BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theriogenology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0093691X24004047","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
Metabolic profile and glycemic response in fully-grown sows born using assisted reproductive technologies
The aim of the present work was to gain insight into the metabolism of pigs derived from assisted reproductive technologies during their adulthood. Approximately 4h after feeding, a blood sample was taken from 3.5 year old sows born by artificial insemination (AI group, n = 7) and transfer of in vitro produced embryos (IVP group, n = 11) to determine the physiological concentrations of the main biomarkers of carbohydrates (glucose and lactate), proteins (albumin, creatinine and urea) and lipids (cholesterol and triglycerides). Four weeks later, an oral glucose tolerance test (OGTT; 1.75g glucose/kg body weight) was performed after an overnight fast and 1h of water withdrawal. Blood samples were obtained prior (T = 0 min; fasting conditions) and 15, 30, 45, 60, 90, 120, 150, 180, 210 and 240 min after glucose intake. At each time point, glycemia was measured immediately using glucometer test strips, and serum was collected to determine the above metabolites along with insulin and glucagon. After OGTT, the area under the curve (AUC) between sampling times and homeostasis model assessment of insulin resistance (HOMA) indices were calculated. Under physiological conditions, the concentration of metabolites studied was similar between AI and IVP sows. In both groups, fasting decreased cholesterol and increased triglycerides and urea (P < 0.001). However, creatinine and lactate were similar in both groups under physiological and fasting conditions. The expected increase in albuminemia and decrease in glycaemia after fasting was only observed in IVP sows. OGTT revealed a different glucose curve pattern (monophasic in AI and biphasic in IVP group), a lower mean concentration of cholesterol, glucose, lactate, triglycerides in IVP compared to AI pigs (P < 0.01), and a higher mean concentration of albumin, creatinine and insulin in IVP compared to AI group (P < 0.05). On the contrary, no differences were found between groups for mean serum glucagon and urea levels, nor for glucose homeostasis indices HOMA-IR and HOMA-%B. The AUC differed between groups at several time points with larger AUC for creatinine, and smaller AUC for glucose, glucagon, and triglycerides, in IVP pigs than in AI pigs at 180–210 min (P < 0.05). In conclusion, under physiological conditions the metabolic profile of fully-grown AI and IVP sows is similar and within normal ranges. Glucose challenge revealed differences in metabolic and insulin responses between groups but with normal glucose tolerance in both cases.
期刊介绍:
Theriogenology provides an international forum for researchers, clinicians, and industry professionals in animal reproductive biology. This acclaimed journal publishes articles on a wide range of topics in reproductive and developmental biology, of domestic mammal, avian, and aquatic species as well as wild species which are the object of veterinary care in research or conservation programs.