{"title":"基于结构和残基性质的纳米蛋白质结构稳定性人工智能预测--基于平均汇集双图卷积网络","authors":"Daixi Li, Yuqi Zhu, Wujie Zhang, Jing Liu, Xiaochen Yang, Zhihong Liu, Dongqing Wei","doi":"10.1007/s12539-024-00662-7","DOIUrl":null,"url":null,"abstract":"<p><p>The structural stability of proteins is an important topic in various fields such as biotechnology, pharmaceuticals, and enzymology. Specifically, understanding the structural stability of protein is crucial for protein design. Artificial design, while pursuing high thermodynamic stability and rigidity of proteins, inevitably sacrifices biological functions closely related to protein flexibility. The thermodynamic stability of proteins is not always optimal when they are highest to perfectly perform their biological functions. Extensive theoretical and experimental screening is often required to obtain stable protein structures. Thus, it becomes critically important to develop a stability prediction model based on the balance between protein stability and bioactivity. To design protein drugs with better functionality in a broader structural space, a novel protein structural stability predictor called PSSP has been developed in this study. PSSP is a mean pooled dual graph convolutional network (GCN) model based on sequence characteristics and secondary structure, distance matrix, graph, and residue properties of a nanoprotein to provide rapid prediction and judgment. This model exhibits excellent robustness in predicting the structural stability of nanoproteins. Comparing with previous artificial intelligence algorithms, the results indicate this model can provide a rapid and accurate assessment of the structural stability of artificially designed proteins, which shows the great promises for promoting the robust development of protein design.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI Prediction of Structural Stability of Nanoproteins Based on Structures and Residue Properties by Mean Pooled Dual Graph Convolutional Network.\",\"authors\":\"Daixi Li, Yuqi Zhu, Wujie Zhang, Jing Liu, Xiaochen Yang, Zhihong Liu, Dongqing Wei\",\"doi\":\"10.1007/s12539-024-00662-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The structural stability of proteins is an important topic in various fields such as biotechnology, pharmaceuticals, and enzymology. Specifically, understanding the structural stability of protein is crucial for protein design. Artificial design, while pursuing high thermodynamic stability and rigidity of proteins, inevitably sacrifices biological functions closely related to protein flexibility. The thermodynamic stability of proteins is not always optimal when they are highest to perfectly perform their biological functions. Extensive theoretical and experimental screening is often required to obtain stable protein structures. Thus, it becomes critically important to develop a stability prediction model based on the balance between protein stability and bioactivity. To design protein drugs with better functionality in a broader structural space, a novel protein structural stability predictor called PSSP has been developed in this study. PSSP is a mean pooled dual graph convolutional network (GCN) model based on sequence characteristics and secondary structure, distance matrix, graph, and residue properties of a nanoprotein to provide rapid prediction and judgment. This model exhibits excellent robustness in predicting the structural stability of nanoproteins. Comparing with previous artificial intelligence algorithms, the results indicate this model can provide a rapid and accurate assessment of the structural stability of artificially designed proteins, which shows the great promises for promoting the robust development of protein design.</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-024-00662-7\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-024-00662-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
AI Prediction of Structural Stability of Nanoproteins Based on Structures and Residue Properties by Mean Pooled Dual Graph Convolutional Network.
The structural stability of proteins is an important topic in various fields such as biotechnology, pharmaceuticals, and enzymology. Specifically, understanding the structural stability of protein is crucial for protein design. Artificial design, while pursuing high thermodynamic stability and rigidity of proteins, inevitably sacrifices biological functions closely related to protein flexibility. The thermodynamic stability of proteins is not always optimal when they are highest to perfectly perform their biological functions. Extensive theoretical and experimental screening is often required to obtain stable protein structures. Thus, it becomes critically important to develop a stability prediction model based on the balance between protein stability and bioactivity. To design protein drugs with better functionality in a broader structural space, a novel protein structural stability predictor called PSSP has been developed in this study. PSSP is a mean pooled dual graph convolutional network (GCN) model based on sequence characteristics and secondary structure, distance matrix, graph, and residue properties of a nanoprotein to provide rapid prediction and judgment. This model exhibits excellent robustness in predicting the structural stability of nanoproteins. Comparing with previous artificial intelligence algorithms, the results indicate this model can provide a rapid and accurate assessment of the structural stability of artificially designed proteins, which shows the great promises for promoting the robust development of protein design.
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.