镜像花从混合手性到固定手性的进化:适应动力学的启示。

IF 3.1 2区 环境科学与生态学 Q2 ECOLOGY
Evolution Pub Date : 2024-10-05 DOI:10.1093/evolut/qpae140
Marco Saltini, Spencer C H Barrett, Eva E Deinum
{"title":"镜像花从混合手性到固定手性的进化:适应动力学的启示。","authors":"Marco Saltini, Spencer C H Barrett, Eva E Deinum","doi":"10.1093/evolut/qpae140","DOIUrl":null,"url":null,"abstract":"<p><p>Mirror-image flowers (enantiostyly) involve a form of sexual asymmetry in which a flower's style is deflected either to the left or right side, with a pollinating anther orientated in the opposite direction. This curious floral polymorphism, which was known but not studied by Charles Darwin, occurs in at least 11 unrelated angiosperm families and represents a striking example of adaptive convergence in form and function associated with cross-pollination by insects. In several lineages, dimorphic enantiostyly (one stylar orientation per plant, both forms occurring within populations) has evolved from monomorphic enantiostyly, in which all plants can produce both style orientations. We use a modelling approach to investigate the emergence of dimorphic enantiostyly from monomorphic enantiostyly under gradual evolution. We show using adaptive dynamics that depending on the balance between inbreeding depression following geitonogamy, pollination efficiency and plant density, dimorphism can evolve from an ancestral monomorphic population. In general, the newly emergent dimorphic population is stable against invasion of a monomorphic mutant. However, our model predicts that under certain ecological conditions, e.g., a decline of pollinators, dimorphic enantiostyly may revert to a monomorphic state. We demonstrate using population genetics simulations that the observed evolutionary transitions are possible assuming a plausible genetic architecture.</p>","PeriodicalId":12082,"journal":{"name":"Evolution","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolution from mixed to fixed handedness in mirror-image flowers: insights from adaptive dynamics.\",\"authors\":\"Marco Saltini, Spencer C H Barrett, Eva E Deinum\",\"doi\":\"10.1093/evolut/qpae140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mirror-image flowers (enantiostyly) involve a form of sexual asymmetry in which a flower's style is deflected either to the left or right side, with a pollinating anther orientated in the opposite direction. This curious floral polymorphism, which was known but not studied by Charles Darwin, occurs in at least 11 unrelated angiosperm families and represents a striking example of adaptive convergence in form and function associated with cross-pollination by insects. In several lineages, dimorphic enantiostyly (one stylar orientation per plant, both forms occurring within populations) has evolved from monomorphic enantiostyly, in which all plants can produce both style orientations. We use a modelling approach to investigate the emergence of dimorphic enantiostyly from monomorphic enantiostyly under gradual evolution. We show using adaptive dynamics that depending on the balance between inbreeding depression following geitonogamy, pollination efficiency and plant density, dimorphism can evolve from an ancestral monomorphic population. In general, the newly emergent dimorphic population is stable against invasion of a monomorphic mutant. However, our model predicts that under certain ecological conditions, e.g., a decline of pollinators, dimorphic enantiostyly may revert to a monomorphic state. We demonstrate using population genetics simulations that the observed evolutionary transitions are possible assuming a plausible genetic architecture.</p>\",\"PeriodicalId\":12082,\"journal\":{\"name\":\"Evolution\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolution\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1093/evolut/qpae140\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/evolut/qpae140","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

镜像花(enantiostyly)是一种性不对称形式,花柱向左或向右偏转,授粉花药的方向则相反。这种奇特的花朵多态性在查尔斯-达尔文(Charles Darwin)之前就已经知道,但却没有进行过研究,它至少出现在 11 个不相关的被子植物科中,是昆虫异花授粉引起的形式和功能适应性趋同的一个突出例子。在几个品系中,二态对映体(每种植物有一种花柱方向,在种群中两种花柱方向都有)是从单态对映体进化而来的,在单态对映体中,所有植物都能产生两种花柱方向。我们采用建模方法研究了在渐进进化过程中从单态对映体进化出二态对映体的过程。我们利用适应动力学证明,根据同株异花授粉后近亲繁殖抑制、授粉效率和植物密度之间的平衡,二态对映体可以从祖先的单态种群进化而来。一般来说,新出现的二态种群在单态突变体入侵时是稳定的。然而,我们的模型预测,在某些生态条件下,例如传粉者减少,二态对映体可能会恢复到单态状态。我们利用群体遗传学模拟证明,假设遗传结构可信,观察到的进化转变是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolution from mixed to fixed handedness in mirror-image flowers: insights from adaptive dynamics.

Mirror-image flowers (enantiostyly) involve a form of sexual asymmetry in which a flower's style is deflected either to the left or right side, with a pollinating anther orientated in the opposite direction. This curious floral polymorphism, which was known but not studied by Charles Darwin, occurs in at least 11 unrelated angiosperm families and represents a striking example of adaptive convergence in form and function associated with cross-pollination by insects. In several lineages, dimorphic enantiostyly (one stylar orientation per plant, both forms occurring within populations) has evolved from monomorphic enantiostyly, in which all plants can produce both style orientations. We use a modelling approach to investigate the emergence of dimorphic enantiostyly from monomorphic enantiostyly under gradual evolution. We show using adaptive dynamics that depending on the balance between inbreeding depression following geitonogamy, pollination efficiency and plant density, dimorphism can evolve from an ancestral monomorphic population. In general, the newly emergent dimorphic population is stable against invasion of a monomorphic mutant. However, our model predicts that under certain ecological conditions, e.g., a decline of pollinators, dimorphic enantiostyly may revert to a monomorphic state. We demonstrate using population genetics simulations that the observed evolutionary transitions are possible assuming a plausible genetic architecture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Evolution
Evolution 环境科学-进化生物学
CiteScore
5.00
自引率
9.10%
发文量
0
审稿时长
3-6 weeks
期刊介绍: Evolution, published for the Society for the Study of Evolution, is the premier publication devoted to the study of organic evolution and the integration of the various fields of science concerned with evolution. The journal presents significant and original results that extend our understanding of evolutionary phenomena and processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信