{"title":"优化气道正压疗法的物理传感器驱动方法","authors":"Delpha J;Priyanka Kokil;Subramaniyan S;Jayanthi T","doi":"10.1109/LSENS.2024.3464673","DOIUrl":null,"url":null,"abstract":"Obstructive sleep apnea (OSA) is a sleep disorder for which continuous positive airway pressure (CPAP) therapy is an effective treatment. In this study, a novel method to control the pressure in the positive airway pressure (PAP) device is proposed, which, in return, reduces the need to keep the subject at high pressure throughout extended period of their sleep without hindering the efficacy of the therapy. A standard CPAP/Bi-PAP (bilevel positive airway pressure) titration study is compared and verified with the predicted pressure values. Also, the relationship and correlation between weight, age, \n<inline-formula><tex-math>$SpO_{2}$</tex-math></inline-formula>\n, oxygen desaturation index, and the maximum pressure required for PAP therapy are also analyzed. Thus, it is affirmed that the PAP therapy compliance can be improved by sustaining the essential pressure and avoiding extended high-pressure intervals during therapy, unless they are absolutely required.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 10","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physical Sensor Driven Approach for Optimizing Positive Airway Pressure Therapy\",\"authors\":\"Delpha J;Priyanka Kokil;Subramaniyan S;Jayanthi T\",\"doi\":\"10.1109/LSENS.2024.3464673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Obstructive sleep apnea (OSA) is a sleep disorder for which continuous positive airway pressure (CPAP) therapy is an effective treatment. In this study, a novel method to control the pressure in the positive airway pressure (PAP) device is proposed, which, in return, reduces the need to keep the subject at high pressure throughout extended period of their sleep without hindering the efficacy of the therapy. A standard CPAP/Bi-PAP (bilevel positive airway pressure) titration study is compared and verified with the predicted pressure values. Also, the relationship and correlation between weight, age, \\n<inline-formula><tex-math>$SpO_{2}$</tex-math></inline-formula>\\n, oxygen desaturation index, and the maximum pressure required for PAP therapy are also analyzed. Thus, it is affirmed that the PAP therapy compliance can be improved by sustaining the essential pressure and avoiding extended high-pressure intervals during therapy, unless they are absolutely required.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"8 10\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10684572/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10684572/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
阻塞性睡眠呼吸暂停(OSA)是一种睡眠障碍,持续气道正压(CPAP)疗法是一种有效的治疗方法。本研究提出了一种控制气道正压(PAP)装置压力的新方法,这种方法可以在不影响疗效的前提下,减少受试者在睡眠过程中长时间处于高压状态的需要。标准 CPAP/Bi-PAP(双水平气道正压)滴定研究与预测压力值进行了比较和验证。此外,还分析了体重、年龄、SpO_{2}$、氧饱和度指数和 PAP 治疗所需的最大压力之间的关系和相关性。因此,可以肯定的是,通过维持必要的压力和避免在治疗过程中延长高压间隔(除非绝对需要),可以提高 PAP 治疗的依从性。
Physical Sensor Driven Approach for Optimizing Positive Airway Pressure Therapy
Obstructive sleep apnea (OSA) is a sleep disorder for which continuous positive airway pressure (CPAP) therapy is an effective treatment. In this study, a novel method to control the pressure in the positive airway pressure (PAP) device is proposed, which, in return, reduces the need to keep the subject at high pressure throughout extended period of their sleep without hindering the efficacy of the therapy. A standard CPAP/Bi-PAP (bilevel positive airway pressure) titration study is compared and verified with the predicted pressure values. Also, the relationship and correlation between weight, age,
$SpO_{2}$
, oxygen desaturation index, and the maximum pressure required for PAP therapy are also analyzed. Thus, it is affirmed that the PAP therapy compliance can be improved by sustaining the essential pressure and avoiding extended high-pressure intervals during therapy, unless they are absolutely required.