基于模块化多电平转换器的高压直流电网直流故障电流分析解决方案的数据驱动参数反演

Meiqin Mao;Xun Jiang;Kaifan Hu;Liuchen Chang
{"title":"基于模块化多电平转换器的高压直流电网直流故障电流分析解决方案的数据驱动参数反演","authors":"Meiqin Mao;Xun Jiang;Kaifan Hu;Liuchen Chang","doi":"10.24295/CPSSTPEA.2024.00008","DOIUrl":null,"url":null,"abstract":"In a multi-terminal modular multilevel converter-based high voltage direct current (MMC-HVDC) grid, due to the coupling between converter stations, it is difficult to obtain an accurate analytical solution on the DC fault current through the traditional equivalent resistance-inductance-capacitance circuit model (E-RLCM). In this paper, a data-driven parameter inversion method is proposed to derive the accurate equivalent parameters in the E-RLCM by combining the electromagnetic transient simulation data with the backpropagation neural network, and the polynomial regression. In this way, the accurate analytic calculation expression of the DC fault current for a multi-terminal MMC-HVDC grid with a pole-to-pole fault (PTPF) is obtained. To verify the effectiveness of the proposed method, simulations are performed for a four-terminal MMC-HVDC grid with a PTPF by PSCAD. The results show that the average calculation error of the DC fault current using the inversion parameters is significantly reduced from over 10% to 2.84%.","PeriodicalId":100339,"journal":{"name":"CPSS Transactions on Power Electronics and Applications","volume":"9 3","pages":"274-282"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10554806","citationCount":"0","resultStr":"{\"title\":\"Data-Driven Parameter Inversion for DC Fault Current Analytical Solution of Modular Multilevel Converter-Based High Voltage DC Grid\",\"authors\":\"Meiqin Mao;Xun Jiang;Kaifan Hu;Liuchen Chang\",\"doi\":\"10.24295/CPSSTPEA.2024.00008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a multi-terminal modular multilevel converter-based high voltage direct current (MMC-HVDC) grid, due to the coupling between converter stations, it is difficult to obtain an accurate analytical solution on the DC fault current through the traditional equivalent resistance-inductance-capacitance circuit model (E-RLCM). In this paper, a data-driven parameter inversion method is proposed to derive the accurate equivalent parameters in the E-RLCM by combining the electromagnetic transient simulation data with the backpropagation neural network, and the polynomial regression. In this way, the accurate analytic calculation expression of the DC fault current for a multi-terminal MMC-HVDC grid with a pole-to-pole fault (PTPF) is obtained. To verify the effectiveness of the proposed method, simulations are performed for a four-terminal MMC-HVDC grid with a PTPF by PSCAD. The results show that the average calculation error of the DC fault current using the inversion parameters is significantly reduced from over 10% to 2.84%.\",\"PeriodicalId\":100339,\"journal\":{\"name\":\"CPSS Transactions on Power Electronics and Applications\",\"volume\":\"9 3\",\"pages\":\"274-282\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10554806\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CPSS Transactions on Power Electronics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10554806/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CPSS Transactions on Power Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10554806/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在基于多端模块化多电平换流器的高压直流(MMC-HVDC)电网中,由于换流站之间的耦合,很难通过传统的等效电阻-电感-电容电路模型(E-RLCM)获得直流故障电流的精确解析解。本文提出了一种数据驱动的参数反演方法,通过将电磁暂态仿真数据与反向传播神经网络和多项式回归相结合,得出 E-RLCM 中的精确等效参数。这样,就得到了多端 MMC-HVDC 电网极对极故障(PTPF)直流故障电流的精确解析计算表达式。为了验证所提方法的有效性,我们使用 PSCAD 对具有极-极故障的四端 MMC-HVDC 电网进行了仿真。结果表明,使用反转参数计算直流故障电流的平均误差从 10%以上大幅降低到 2.84%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-Driven Parameter Inversion for DC Fault Current Analytical Solution of Modular Multilevel Converter-Based High Voltage DC Grid
In a multi-terminal modular multilevel converter-based high voltage direct current (MMC-HVDC) grid, due to the coupling between converter stations, it is difficult to obtain an accurate analytical solution on the DC fault current through the traditional equivalent resistance-inductance-capacitance circuit model (E-RLCM). In this paper, a data-driven parameter inversion method is proposed to derive the accurate equivalent parameters in the E-RLCM by combining the electromagnetic transient simulation data with the backpropagation neural network, and the polynomial regression. In this way, the accurate analytic calculation expression of the DC fault current for a multi-terminal MMC-HVDC grid with a pole-to-pole fault (PTPF) is obtained. To verify the effectiveness of the proposed method, simulations are performed for a four-terminal MMC-HVDC grid with a PTPF by PSCAD. The results show that the average calculation error of the DC fault current using the inversion parameters is significantly reduced from over 10% to 2.84%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信