Andrei Miroshnikov, Lev Yakovlev, Nikolay Syrov, Anatoly Vasilyev, Artemiy Berkmush-Antipova, Frol Golovanov, Alexander Kaplan
{"title":"对运动和触觉想象的不同血流动力学反应:多通道 fNIRS 图谱的启示。","authors":"Andrei Miroshnikov, Lev Yakovlev, Nikolay Syrov, Anatoly Vasilyev, Artemiy Berkmush-Antipova, Frol Golovanov, Alexander Kaplan","doi":"10.1007/s10548-024-01075-x","DOIUrl":null,"url":null,"abstract":"<p><p>Tactile and motor imagery are crucial components of sensorimotor functioning and cognitive neuroscience research, yet the neural mechanisms of tactile imagery remain underexplored compared to motor imagery. This study employs multichannel functional near-infrared spectroscopy (fNIRS) combined with image reconstruction techniques to investigate the neural hemodynamics associated with tactile (TI) and motor imagery (MI). In a study of 15 healthy participants, we found that MI elicited significantly greater hemodynamic responses (HRs) in the precentral area compared to TI, suggesting the involvement of different cortical areas involved in two different types of sensorimotor mental imagery. Concurrently, the HRs in S1 and parietal areas exhibited comparable patterns in both TI and MI. During MI, both motor and somatosensory areas demonstrated comparable HRs. However, in TI, somatosensory activation was observed to be more pronounced. Our results highlight the distinctive neural profiles of motor versus tactile imagery and indicate fNIRS technique to be sensitive for this. This distinction is significant for fundamental understanding of sensorimotor integration and for developing advanced neurotechnologies, including imagery-based brain-computer interfaces (BCIs) that can differentiate between different types of mental imagery.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"38 1","pages":"4"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential Hemodynamic Responses to Motor and Tactile Imagery: Insights from Multichannel fNIRS Mapping.\",\"authors\":\"Andrei Miroshnikov, Lev Yakovlev, Nikolay Syrov, Anatoly Vasilyev, Artemiy Berkmush-Antipova, Frol Golovanov, Alexander Kaplan\",\"doi\":\"10.1007/s10548-024-01075-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tactile and motor imagery are crucial components of sensorimotor functioning and cognitive neuroscience research, yet the neural mechanisms of tactile imagery remain underexplored compared to motor imagery. This study employs multichannel functional near-infrared spectroscopy (fNIRS) combined with image reconstruction techniques to investigate the neural hemodynamics associated with tactile (TI) and motor imagery (MI). In a study of 15 healthy participants, we found that MI elicited significantly greater hemodynamic responses (HRs) in the precentral area compared to TI, suggesting the involvement of different cortical areas involved in two different types of sensorimotor mental imagery. Concurrently, the HRs in S1 and parietal areas exhibited comparable patterns in both TI and MI. During MI, both motor and somatosensory areas demonstrated comparable HRs. However, in TI, somatosensory activation was observed to be more pronounced. Our results highlight the distinctive neural profiles of motor versus tactile imagery and indicate fNIRS technique to be sensitive for this. This distinction is significant for fundamental understanding of sensorimotor integration and for developing advanced neurotechnologies, including imagery-based brain-computer interfaces (BCIs) that can differentiate between different types of mental imagery.</p>\",\"PeriodicalId\":55329,\"journal\":{\"name\":\"Brain Topography\",\"volume\":\"38 1\",\"pages\":\"4\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Topography\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10548-024-01075-x\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Topography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10548-024-01075-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
摘要
触觉意象和运动意象是感觉运动功能和认知神经科学研究的重要组成部分,但与运动意象相比,触觉意象的神经机制仍未得到充分探索。本研究采用多通道功能性近红外光谱(fNIRS)结合图像重建技术来研究与触觉意象(TI)和运动意象(MI)相关的神经血液动力学。在一项对 15 名健康参与者进行的研究中,我们发现与触觉意象相比,运动意象在中枢前区引起的血液动力学反应(HRs)明显更大,这表明两种不同类型的感觉运动心理意象涉及不同的皮层区域。同时,在 TI 和 MI 中,S1 和顶叶区的 HRs 表现出相似的模式。在 MI 过程中,运动区和躯体感觉区都表现出相似的 HRs。然而,在 TI 中,体感激活更为明显。我们的研究结果凸显了运动意象与触觉意象的独特神经特征,并表明 fNIRS 技术对此非常敏感。这种区别对于从根本上理解传感运动整合以及开发先进的神经技术(包括基于意象的脑机接口(BCI))具有重要意义,这些技术可以区分不同类型的心理意象。
Differential Hemodynamic Responses to Motor and Tactile Imagery: Insights from Multichannel fNIRS Mapping.
Tactile and motor imagery are crucial components of sensorimotor functioning and cognitive neuroscience research, yet the neural mechanisms of tactile imagery remain underexplored compared to motor imagery. This study employs multichannel functional near-infrared spectroscopy (fNIRS) combined with image reconstruction techniques to investigate the neural hemodynamics associated with tactile (TI) and motor imagery (MI). In a study of 15 healthy participants, we found that MI elicited significantly greater hemodynamic responses (HRs) in the precentral area compared to TI, suggesting the involvement of different cortical areas involved in two different types of sensorimotor mental imagery. Concurrently, the HRs in S1 and parietal areas exhibited comparable patterns in both TI and MI. During MI, both motor and somatosensory areas demonstrated comparable HRs. However, in TI, somatosensory activation was observed to be more pronounced. Our results highlight the distinctive neural profiles of motor versus tactile imagery and indicate fNIRS technique to be sensitive for this. This distinction is significant for fundamental understanding of sensorimotor integration and for developing advanced neurotechnologies, including imagery-based brain-computer interfaces (BCIs) that can differentiate between different types of mental imagery.
期刊介绍:
Brain Topography publishes clinical and basic research on cognitive neuroscience and functional neurophysiology using the full range of imaging techniques including EEG, MEG, fMRI, TMS, diffusion imaging, spectroscopy, intracranial recordings, lesion studies, and related methods. Submissions combining multiple techniques are particularly encouraged, as well as reports of new and innovative methodologies.