Jan M Brendel, Jonathan Walterspiel, Florian Hagen, Jens Kübler, Andreas S Brendlin, Saif Afat, Jean-François Paul, Thomas Küstner, Konstantin Nikolaou, Meinrad Gawaz, Simon Greulich, Patrick Krumm, Moritz T Winkelmann
{"title":"利用深度学习和超高分辨率光子计数冠状动脉 CT 血管造影检测冠状动脉疾病。","authors":"Jan M Brendel, Jonathan Walterspiel, Florian Hagen, Jens Kübler, Andreas S Brendlin, Saif Afat, Jean-François Paul, Thomas Küstner, Konstantin Nikolaou, Meinrad Gawaz, Simon Greulich, Patrick Krumm, Moritz T Winkelmann","doi":"10.1016/j.diii.2024.09.012","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The purpose of this study was to evaluate the diagnostic performance of automated deep learning in the detection of coronary artery disease (CAD) on photon-counting coronary CT angiography (PC-CCTA).</p><p><strong>Materials and methods: </strong>Consecutive patients with suspected CAD who underwent PC-CCTA between January 2022 and December 2023 were included in this retrospective, single-center study. Non-ultra-high resolution (UHR) PC-CCTA images were analyzed by artificial intelligence using two deep learning models (CorEx, Spimed-AI), and compared to human expert reader assessment using UHR PC-CCTA images. Diagnostic performance for global CAD assessment (at least one significant stenosis ≥ 50 %) was estimated at patient and vessel levels.</p><p><strong>Results: </strong>A total of 140 patients (96 men, 44 women) with a median age of 60 years (first quartile, 51; third quartile, 68) were evaluated. Significant CAD on UHR PC-CCTA was present in 36/140 patients (25.7 %). The sensitivity, specificity, accuracy, positive predictive value), and negative predictive value of deep learning-based CAD were 97.2 %, 81.7 %, 85.7 %, 64.8 %, and 98.9 %, respectively, at the patient level and 96.6 %, 86.7 %, 88.1 %, 53.8 %, and 99.4 %, respectively, at the vessel level. The area under the receiver operating characteristic curve was 0.90 (95 % CI: 0.83-0.94) at the patient level and 0.92 (95 % CI: 0.89-0.94) at the vessel level.</p><p><strong>Conclusion: </strong>Automated deep learning shows remarkable performance for the diagnosis of significant CAD on non-UHR PC-CCTA images. AI pre-reading may be of supportive value to the human reader in daily clinical practice to target and validate coronary artery stenosis using UHR PC-CCTA.</p>","PeriodicalId":48656,"journal":{"name":"Diagnostic and Interventional Imaging","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coronary artery disease detection using deep learning and ultrahigh-resolution photon-counting coronary CT angiography.\",\"authors\":\"Jan M Brendel, Jonathan Walterspiel, Florian Hagen, Jens Kübler, Andreas S Brendlin, Saif Afat, Jean-François Paul, Thomas Küstner, Konstantin Nikolaou, Meinrad Gawaz, Simon Greulich, Patrick Krumm, Moritz T Winkelmann\",\"doi\":\"10.1016/j.diii.2024.09.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>The purpose of this study was to evaluate the diagnostic performance of automated deep learning in the detection of coronary artery disease (CAD) on photon-counting coronary CT angiography (PC-CCTA).</p><p><strong>Materials and methods: </strong>Consecutive patients with suspected CAD who underwent PC-CCTA between January 2022 and December 2023 were included in this retrospective, single-center study. Non-ultra-high resolution (UHR) PC-CCTA images were analyzed by artificial intelligence using two deep learning models (CorEx, Spimed-AI), and compared to human expert reader assessment using UHR PC-CCTA images. Diagnostic performance for global CAD assessment (at least one significant stenosis ≥ 50 %) was estimated at patient and vessel levels.</p><p><strong>Results: </strong>A total of 140 patients (96 men, 44 women) with a median age of 60 years (first quartile, 51; third quartile, 68) were evaluated. Significant CAD on UHR PC-CCTA was present in 36/140 patients (25.7 %). The sensitivity, specificity, accuracy, positive predictive value), and negative predictive value of deep learning-based CAD were 97.2 %, 81.7 %, 85.7 %, 64.8 %, and 98.9 %, respectively, at the patient level and 96.6 %, 86.7 %, 88.1 %, 53.8 %, and 99.4 %, respectively, at the vessel level. The area under the receiver operating characteristic curve was 0.90 (95 % CI: 0.83-0.94) at the patient level and 0.92 (95 % CI: 0.89-0.94) at the vessel level.</p><p><strong>Conclusion: </strong>Automated deep learning shows remarkable performance for the diagnosis of significant CAD on non-UHR PC-CCTA images. AI pre-reading may be of supportive value to the human reader in daily clinical practice to target and validate coronary artery stenosis using UHR PC-CCTA.</p>\",\"PeriodicalId\":48656,\"journal\":{\"name\":\"Diagnostic and Interventional Imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostic and Interventional Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.diii.2024.09.012\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostic and Interventional Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.diii.2024.09.012","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Coronary artery disease detection using deep learning and ultrahigh-resolution photon-counting coronary CT angiography.
Purpose: The purpose of this study was to evaluate the diagnostic performance of automated deep learning in the detection of coronary artery disease (CAD) on photon-counting coronary CT angiography (PC-CCTA).
Materials and methods: Consecutive patients with suspected CAD who underwent PC-CCTA between January 2022 and December 2023 were included in this retrospective, single-center study. Non-ultra-high resolution (UHR) PC-CCTA images were analyzed by artificial intelligence using two deep learning models (CorEx, Spimed-AI), and compared to human expert reader assessment using UHR PC-CCTA images. Diagnostic performance for global CAD assessment (at least one significant stenosis ≥ 50 %) was estimated at patient and vessel levels.
Results: A total of 140 patients (96 men, 44 women) with a median age of 60 years (first quartile, 51; third quartile, 68) were evaluated. Significant CAD on UHR PC-CCTA was present in 36/140 patients (25.7 %). The sensitivity, specificity, accuracy, positive predictive value), and negative predictive value of deep learning-based CAD were 97.2 %, 81.7 %, 85.7 %, 64.8 %, and 98.9 %, respectively, at the patient level and 96.6 %, 86.7 %, 88.1 %, 53.8 %, and 99.4 %, respectively, at the vessel level. The area under the receiver operating characteristic curve was 0.90 (95 % CI: 0.83-0.94) at the patient level and 0.92 (95 % CI: 0.89-0.94) at the vessel level.
Conclusion: Automated deep learning shows remarkable performance for the diagnosis of significant CAD on non-UHR PC-CCTA images. AI pre-reading may be of supportive value to the human reader in daily clinical practice to target and validate coronary artery stenosis using UHR PC-CCTA.
期刊介绍:
Diagnostic and Interventional Imaging accepts publications originating from any part of the world based only on their scientific merit. The Journal focuses on illustrated articles with great iconographic topics and aims at aiding sharpening clinical decision-making skills as well as following high research topics. All articles are published in English.
Diagnostic and Interventional Imaging publishes editorials, technical notes, letters, original and review articles on abdominal, breast, cancer, cardiac, emergency, forensic medicine, head and neck, musculoskeletal, gastrointestinal, genitourinary, interventional, obstetric, pediatric, thoracic and vascular imaging, neuroradiology, nuclear medicine, as well as contrast material, computer developments, health policies and practice, and medical physics relevant to imaging.