P. Steuer , H.W. Barkema , C. Tejeda , J.M. Hernández , F. Ulloa , M. Salgado
{"title":"副结核分枝杆菌分离株对铜离子处理产生的活性氧压力的反应。","authors":"P. Steuer , H.W. Barkema , C. Tejeda , J.M. Hernández , F. Ulloa , M. Salgado","doi":"10.1016/j.vetmic.2024.110251","DOIUrl":null,"url":null,"abstract":"<div><div>Copper (Cu) ions have been recognized for their efficacy in inactivating bacteria, including <em>Mycobacterium avium</em> subsp. <em>paratuberculosis</em> (MAP), the causative agent of Johne’s disease (JD) known for its resilience to unfavorable conditions. However, the response of MAP isolates isolated from cows to Cu exposure remains inadequately understood, as their responses may differ from those of laboratory-adapted reference strains. In this study, we examined the response of MAP isolates obtained from MAP-infected and affected cows to Cu ion treatment, comparing that with the response of the reference strain ATCC 19698 to the same treatment. Three MAP field isolates and the MAP reference strain were exposed to Cu ions, and their viability, protein/lipid damage, ROS production, and gene expression were evaluated in triplicate. Survival differed among isolates, with an isolate from a cow with clinical JD exhibiting increased tolerance to Cu exposure. While Cu treatment induced lipid peroxidation and ROS production across all isolates, genes associated with Cu detoxification and virulence were upregulated, particularly in the reference strain. Whole genome sequencing analysis revealed that, despite genomic similarities between field isolates and the reference strain ATCC 19698, there were differences regarding the presence/absence of genes related with certain virulence factors. Further research on Cu exposure with larger numbers of MAP isolates is needed to explain the stress-induced responses that influence MAP survival during natural infections and in challenging environments.</div></div>","PeriodicalId":23551,"journal":{"name":"Veterinary microbiology","volume":"298 ","pages":"Article 110251"},"PeriodicalIF":2.4000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Response of Mycobacterium avium subsp. paratuberculosis isolates to reactive oxygen stress generated by treatment with copper ions\",\"authors\":\"P. Steuer , H.W. Barkema , C. Tejeda , J.M. Hernández , F. Ulloa , M. Salgado\",\"doi\":\"10.1016/j.vetmic.2024.110251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Copper (Cu) ions have been recognized for their efficacy in inactivating bacteria, including <em>Mycobacterium avium</em> subsp. <em>paratuberculosis</em> (MAP), the causative agent of Johne’s disease (JD) known for its resilience to unfavorable conditions. However, the response of MAP isolates isolated from cows to Cu exposure remains inadequately understood, as their responses may differ from those of laboratory-adapted reference strains. In this study, we examined the response of MAP isolates obtained from MAP-infected and affected cows to Cu ion treatment, comparing that with the response of the reference strain ATCC 19698 to the same treatment. Three MAP field isolates and the MAP reference strain were exposed to Cu ions, and their viability, protein/lipid damage, ROS production, and gene expression were evaluated in triplicate. Survival differed among isolates, with an isolate from a cow with clinical JD exhibiting increased tolerance to Cu exposure. While Cu treatment induced lipid peroxidation and ROS production across all isolates, genes associated with Cu detoxification and virulence were upregulated, particularly in the reference strain. Whole genome sequencing analysis revealed that, despite genomic similarities between field isolates and the reference strain ATCC 19698, there were differences regarding the presence/absence of genes related with certain virulence factors. Further research on Cu exposure with larger numbers of MAP isolates is needed to explain the stress-induced responses that influence MAP survival during natural infections and in challenging environments.</div></div>\",\"PeriodicalId\":23551,\"journal\":{\"name\":\"Veterinary microbiology\",\"volume\":\"298 \",\"pages\":\"Article 110251\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Veterinary microbiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378113524002736\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378113524002736","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Response of Mycobacterium avium subsp. paratuberculosis isolates to reactive oxygen stress generated by treatment with copper ions
Copper (Cu) ions have been recognized for their efficacy in inactivating bacteria, including Mycobacterium avium subsp. paratuberculosis (MAP), the causative agent of Johne’s disease (JD) known for its resilience to unfavorable conditions. However, the response of MAP isolates isolated from cows to Cu exposure remains inadequately understood, as their responses may differ from those of laboratory-adapted reference strains. In this study, we examined the response of MAP isolates obtained from MAP-infected and affected cows to Cu ion treatment, comparing that with the response of the reference strain ATCC 19698 to the same treatment. Three MAP field isolates and the MAP reference strain were exposed to Cu ions, and their viability, protein/lipid damage, ROS production, and gene expression were evaluated in triplicate. Survival differed among isolates, with an isolate from a cow with clinical JD exhibiting increased tolerance to Cu exposure. While Cu treatment induced lipid peroxidation and ROS production across all isolates, genes associated with Cu detoxification and virulence were upregulated, particularly in the reference strain. Whole genome sequencing analysis revealed that, despite genomic similarities between field isolates and the reference strain ATCC 19698, there were differences regarding the presence/absence of genes related with certain virulence factors. Further research on Cu exposure with larger numbers of MAP isolates is needed to explain the stress-induced responses that influence MAP survival during natural infections and in challenging environments.
期刊介绍:
Veterinary Microbiology is concerned with microbial (bacterial, fungal, viral) diseases of domesticated vertebrate animals (livestock, companion animals, fur-bearing animals, game, poultry, fish) that supply food, other useful products or companionship. In addition, Microbial diseases of wild animals living in captivity, or as members of the feral fauna will also be considered if the infections are of interest because of their interrelation with humans (zoonoses) and/or domestic animals. Studies of antimicrobial resistance are also included, provided that the results represent a substantial advance in knowledge. Authors are strongly encouraged to read - prior to submission - the Editorials (''Scope or cope'' and ''Scope or cope II'') published previously in the journal. The Editors reserve the right to suggest submission to another journal for those papers which they feel would be more appropriate for consideration by that journal.
Original research papers of high quality and novelty on aspects of control, host response, molecular biology, pathogenesis, prevention, and treatment of microbial diseases of animals are published. Papers dealing primarily with immunology, epidemiology, molecular biology and antiviral or microbial agents will only be considered if they demonstrate a clear impact on a disease. Papers focusing solely on diagnostic techniques (such as another PCR protocol or ELISA) will not be published - focus should be on a microorganism and not on a particular technique. Papers only reporting microbial sequences, transcriptomics data, or proteomics data will not be considered unless the results represent a substantial advance in knowledge.
Drug trial papers will be considered if they have general application or significance. Papers on the identification of microorganisms will also be considered, but detailed taxonomic studies do not fall within the scope of the journal. Case reports will not be published, unless they have general application or contain novel aspects. Papers of geographically limited interest, which repeat what had been established elsewhere will not be considered. The readership of the journal is global.