{"title":"在灵长类动物黄斑孔模型中移植人类多能干细胞衍生视网膜片。","authors":"Yasuaki Iwama, Yasuko Sugase-Miyamoto, Kenta Onoue, Hirofumi Uyama, Keiji Matsuda, Kazuko Hayashi, Ryutaro Akiba, Tomohiro Masuda, Satoshi Yokota, Shigenobu Yonemura, Kohji Nishida, Masayo Takahashi, Yasuo Kurimoto, Michiko Mandai","doi":"10.1016/j.stemcr.2024.09.002","DOIUrl":null,"url":null,"abstract":"<p><p>Macular hole (MH) is a retinal break involving the fovea that causes impaired vision. Although advances in vitreoretinal surgical techniques achieve >90% MH closure rate, refractory cases still exist. For such cases, autologous retinal transplantation is an optional therapy showing good anatomic success, but visual improvement is limited and peripheral visual field defects are inevitable after graft harvesting. Here, using a non-human primate model, we evaluated whether human embryonic stem cell-derived retinal organoid (RO) sheet transplantation can be an effective option for treating MH. After transplantation, MH was successfully closed by continuous filling of the MH space with the RO sheet, resulting in improved visual function, although no host-graft synaptic connections were confirmed. Mild xeno-transplantation rejection was controlled by additional focal steroid injections and rod/cone photoreceptors developed in the graft. Overall, our findings suggest pluripotent stem cell-derived RO sheet transplantation as a practical option for refractory MH treatment.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"1524-1533"},"PeriodicalIF":5.9000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11589285/pdf/","citationCount":"0","resultStr":"{\"title\":\"Transplantation of human pluripotent stem cell-derived retinal sheet in a primate model of macular hole.\",\"authors\":\"Yasuaki Iwama, Yasuko Sugase-Miyamoto, Kenta Onoue, Hirofumi Uyama, Keiji Matsuda, Kazuko Hayashi, Ryutaro Akiba, Tomohiro Masuda, Satoshi Yokota, Shigenobu Yonemura, Kohji Nishida, Masayo Takahashi, Yasuo Kurimoto, Michiko Mandai\",\"doi\":\"10.1016/j.stemcr.2024.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Macular hole (MH) is a retinal break involving the fovea that causes impaired vision. Although advances in vitreoretinal surgical techniques achieve >90% MH closure rate, refractory cases still exist. For such cases, autologous retinal transplantation is an optional therapy showing good anatomic success, but visual improvement is limited and peripheral visual field defects are inevitable after graft harvesting. Here, using a non-human primate model, we evaluated whether human embryonic stem cell-derived retinal organoid (RO) sheet transplantation can be an effective option for treating MH. After transplantation, MH was successfully closed by continuous filling of the MH space with the RO sheet, resulting in improved visual function, although no host-graft synaptic connections were confirmed. Mild xeno-transplantation rejection was controlled by additional focal steroid injections and rod/cone photoreceptors developed in the graft. Overall, our findings suggest pluripotent stem cell-derived RO sheet transplantation as a practical option for refractory MH treatment.</p>\",\"PeriodicalId\":21885,\"journal\":{\"name\":\"Stem Cell Reports\",\"volume\":\" \",\"pages\":\"1524-1533\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11589285/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem Cell Reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.stemcr.2024.09.002\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stemcr.2024.09.002","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Transplantation of human pluripotent stem cell-derived retinal sheet in a primate model of macular hole.
Macular hole (MH) is a retinal break involving the fovea that causes impaired vision. Although advances in vitreoretinal surgical techniques achieve >90% MH closure rate, refractory cases still exist. For such cases, autologous retinal transplantation is an optional therapy showing good anatomic success, but visual improvement is limited and peripheral visual field defects are inevitable after graft harvesting. Here, using a non-human primate model, we evaluated whether human embryonic stem cell-derived retinal organoid (RO) sheet transplantation can be an effective option for treating MH. After transplantation, MH was successfully closed by continuous filling of the MH space with the RO sheet, resulting in improved visual function, although no host-graft synaptic connections were confirmed. Mild xeno-transplantation rejection was controlled by additional focal steroid injections and rod/cone photoreceptors developed in the graft. Overall, our findings suggest pluripotent stem cell-derived RO sheet transplantation as a practical option for refractory MH treatment.
期刊介绍:
Stem Cell Reports publishes high-quality, peer-reviewed research presenting conceptual or practical advances across the breadth of stem cell research and its applications to medicine. Our particular focus on shorter, single-point articles, timely publication, strong editorial decision-making and scientific input by leaders in the field and a "scoop protection" mechanism are reasons to submit your best papers.