在与胎膜早破相关的体外模型中,谷氨酰胺可减轻炎症反应并刺激羊膜细胞增殖。

IF 2.6 3区 医学 Q2 OBSTETRICS & GYNECOLOGY
Xiang Xiang, Linshen Zhang, Su Li, Yongwei Ren, Daozhen Chen, Lou Liu
{"title":"在与胎膜早破相关的体外模型中,谷氨酰胺可减轻炎症反应并刺激羊膜细胞增殖。","authors":"Xiang Xiang, Linshen Zhang, Su Li, Yongwei Ren, Daozhen Chen, Lou Liu","doi":"10.1007/s43032-024-01691-9","DOIUrl":null,"url":null,"abstract":"<p><p>Premature rupture of membranes (PROM), with a prevalence of 15.3% in China, frequently results in adverse pregnancy outcomes. In this study, we aimed to identify amino acid metabolites that were differentially expressed in PROM versus healthy controls (HC) using targeted metabolomics and further explored their mechanisms of action with in vitro models.Inclusion and exclusion criteria were established to recruit 50 PROM and 50 HC cases for targeted metabolomics analysis. Twenty-three amino acid metabolites were quantified in the secretions of the posterior vaginal fornix of pregnant women between 31 and 36 weeks of gestation. Glutamine (0.0216 vs. 0.037 μg/mg, P = 0.003, AUC = 72.1%) was identified as the most differentially expressed amino acid metabolite between PROM and HC groups, and had a negative correlation with the abundance of Gardnerella (r=-0.3868, P = 0.0055), Megasphaera (r=-0.3130, P = 0.0269), and Prevotella (r=-0.2944, P = 0.0380), respectively.In amniotic epithelial cell and macrophage co-culture model, Glutamine reduced inflammatory cytokines and chemokines expression and suppressed macrophage chemotaxis. In LPS stimulated RAW 264.7 inflammation model, Glutamine inhibited the expression of inflammatory proteins iNOS and COX-2, down-regulated mRNA transcription of TNF, IL-6, and IL-1β, and reduced the production of reactive oxygen species through inhibiting NF-κB signaling pathway, and therefore demonstrated its anti-inflammatory effect. Furthermore, Glutamine protected amniotic epithelial cell from autophagy and stimulated its proliferation, therefore may intensify fetal membrane and prevent PROM in vivo.Our results suggested that low Glutamine level in vaginal secretion can be used as an indicator for PROM, and local Glutamine supplementation is a potential intervention and prevention strategy for PROM.</p>","PeriodicalId":20920,"journal":{"name":"Reproductive Sciences","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Glutamine Attenuates Inflammation and Stimulates Amniotic Cell Proliferation in Premature Rupture of Membranes-related in vitro Models.\",\"authors\":\"Xiang Xiang, Linshen Zhang, Su Li, Yongwei Ren, Daozhen Chen, Lou Liu\",\"doi\":\"10.1007/s43032-024-01691-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Premature rupture of membranes (PROM), with a prevalence of 15.3% in China, frequently results in adverse pregnancy outcomes. In this study, we aimed to identify amino acid metabolites that were differentially expressed in PROM versus healthy controls (HC) using targeted metabolomics and further explored their mechanisms of action with in vitro models.Inclusion and exclusion criteria were established to recruit 50 PROM and 50 HC cases for targeted metabolomics analysis. Twenty-three amino acid metabolites were quantified in the secretions of the posterior vaginal fornix of pregnant women between 31 and 36 weeks of gestation. Glutamine (0.0216 vs. 0.037 μg/mg, P = 0.003, AUC = 72.1%) was identified as the most differentially expressed amino acid metabolite between PROM and HC groups, and had a negative correlation with the abundance of Gardnerella (r=-0.3868, P = 0.0055), Megasphaera (r=-0.3130, P = 0.0269), and Prevotella (r=-0.2944, P = 0.0380), respectively.In amniotic epithelial cell and macrophage co-culture model, Glutamine reduced inflammatory cytokines and chemokines expression and suppressed macrophage chemotaxis. In LPS stimulated RAW 264.7 inflammation model, Glutamine inhibited the expression of inflammatory proteins iNOS and COX-2, down-regulated mRNA transcription of TNF, IL-6, and IL-1β, and reduced the production of reactive oxygen species through inhibiting NF-κB signaling pathway, and therefore demonstrated its anti-inflammatory effect. Furthermore, Glutamine protected amniotic epithelial cell from autophagy and stimulated its proliferation, therefore may intensify fetal membrane and prevent PROM in vivo.Our results suggested that low Glutamine level in vaginal secretion can be used as an indicator for PROM, and local Glutamine supplementation is a potential intervention and prevention strategy for PROM.</p>\",\"PeriodicalId\":20920,\"journal\":{\"name\":\"Reproductive Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reproductive Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s43032-024-01691-9\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OBSTETRICS & GYNECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproductive Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s43032-024-01691-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

胎膜早破(PROM)在中国的发病率为15.3%,经常导致不良妊娠结局。本研究旨在利用靶向代谢组学方法鉴定胎膜早破患者与健康对照组(HC)中差异表达的氨基酸代谢物,并通过体外模型进一步探讨其作用机制。对妊娠 31 至 36 周孕妇阴道后穹窿分泌物中的 23 种氨基酸代谢物进行了定量分析。谷氨酰胺(0.0216 vs. 0.037 μg/mg,P = 0.003,AUC = 72.1%)被确定为 PROM 组和 HC 组之间表达差异最大的氨基酸代谢物,并且与加德纳菌(Gardnerella)(r=-0.3868,P = 0.在羊膜上皮细胞和巨噬细胞共培养模型中,谷氨酰胺可减少炎症细胞因子和趋化因子的表达,抑制巨噬细胞趋化。在LPS刺激的RAW 264.7炎症模型中,谷氨酰胺抑制了炎症蛋白iNOS和COX-2的表达,下调了TNF、IL-6和IL-1β的mRNA转录,并通过抑制NF-κB信号通路减少了活性氧的产生,从而显示了其抗炎作用。我们的研究结果表明,阴道分泌物中低谷氨酰胺水平可作为PROM的指标,而局部补充谷氨酰胺是一种潜在的PROM干预和预防策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Glutamine Attenuates Inflammation and Stimulates Amniotic Cell Proliferation in Premature Rupture of Membranes-related in vitro Models.

Premature rupture of membranes (PROM), with a prevalence of 15.3% in China, frequently results in adverse pregnancy outcomes. In this study, we aimed to identify amino acid metabolites that were differentially expressed in PROM versus healthy controls (HC) using targeted metabolomics and further explored their mechanisms of action with in vitro models.Inclusion and exclusion criteria were established to recruit 50 PROM and 50 HC cases for targeted metabolomics analysis. Twenty-three amino acid metabolites were quantified in the secretions of the posterior vaginal fornix of pregnant women between 31 and 36 weeks of gestation. Glutamine (0.0216 vs. 0.037 μg/mg, P = 0.003, AUC = 72.1%) was identified as the most differentially expressed amino acid metabolite between PROM and HC groups, and had a negative correlation with the abundance of Gardnerella (r=-0.3868, P = 0.0055), Megasphaera (r=-0.3130, P = 0.0269), and Prevotella (r=-0.2944, P = 0.0380), respectively.In amniotic epithelial cell and macrophage co-culture model, Glutamine reduced inflammatory cytokines and chemokines expression and suppressed macrophage chemotaxis. In LPS stimulated RAW 264.7 inflammation model, Glutamine inhibited the expression of inflammatory proteins iNOS and COX-2, down-regulated mRNA transcription of TNF, IL-6, and IL-1β, and reduced the production of reactive oxygen species through inhibiting NF-κB signaling pathway, and therefore demonstrated its anti-inflammatory effect. Furthermore, Glutamine protected amniotic epithelial cell from autophagy and stimulated its proliferation, therefore may intensify fetal membrane and prevent PROM in vivo.Our results suggested that low Glutamine level in vaginal secretion can be used as an indicator for PROM, and local Glutamine supplementation is a potential intervention and prevention strategy for PROM.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reproductive Sciences
Reproductive Sciences 医学-妇产科学
CiteScore
5.50
自引率
3.40%
发文量
322
审稿时长
4-8 weeks
期刊介绍: Reproductive Sciences (RS) is a peer-reviewed, monthly journal publishing original research and reviews in obstetrics and gynecology. RS is multi-disciplinary and includes research in basic reproductive biology and medicine, maternal-fetal medicine, obstetrics, gynecology, reproductive endocrinology, urogynecology, fertility/infertility, embryology, gynecologic/reproductive oncology, developmental biology, stem cell research, molecular/cellular biology and other related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信