神经网络辅助单分子定位显微镜中的聚类点扩散函数定位。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Pranjal Choudhury, Bosanta R Boruah
{"title":"神经网络辅助单分子定位显微镜中的聚类点扩散函数定位。","authors":"Pranjal Choudhury, Bosanta R Boruah","doi":"10.1111/jmi.13362","DOIUrl":null,"url":null,"abstract":"<p><p>Single-molecule localization microscopy (SMLM), which has revolutionized nanoscale imaging, faces challenges in densely labelled samples due to fluorophore clustering, leading to compromised localization accuracy. In this paper, we propose a novel convolutional neural network (CNN)-assisted approach to address the issue of locating the clustered fluorophores. Our CNN is trained on a diverse data set of simulated SMLM images where it learns to predict point spread function (PSF) locations by generating Gaussian blobs as output. Through rigorous evaluation, we demonstrate significant improvements in PSF localization accuracy, especially in densely labelled samples where traditional methods struggle. In addition, we employ blob detection as a post-processing technique to refine the predicted PSF locations and enhance localization precision. Our study underscores the efficacy of CNN in addressing clustering challenges in SMLM, thereby advancing spatial resolution and enabling deeper insights into complex biological structures.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural network-assisted localization of clustered point spread functions in single-molecule localization microscopy.\",\"authors\":\"Pranjal Choudhury, Bosanta R Boruah\",\"doi\":\"10.1111/jmi.13362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Single-molecule localization microscopy (SMLM), which has revolutionized nanoscale imaging, faces challenges in densely labelled samples due to fluorophore clustering, leading to compromised localization accuracy. In this paper, we propose a novel convolutional neural network (CNN)-assisted approach to address the issue of locating the clustered fluorophores. Our CNN is trained on a diverse data set of simulated SMLM images where it learns to predict point spread function (PSF) locations by generating Gaussian blobs as output. Through rigorous evaluation, we demonstrate significant improvements in PSF localization accuracy, especially in densely labelled samples where traditional methods struggle. In addition, we employ blob detection as a post-processing technique to refine the predicted PSF locations and enhance localization precision. Our study underscores the efficacy of CNN in addressing clustering challenges in SMLM, thereby advancing spatial resolution and enabling deeper insights into complex biological structures.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/jmi.13362\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/jmi.13362","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

单分子定位显微镜(SMLM)为纳米级成像带来了革命性的变化,但在高密度标记的样品中,由于荧光团的聚集,定位精度受到影响。在本文中,我们提出了一种新型卷积神经网络(CNN)辅助方法来解决荧光团定位问题。我们的卷积神经网络在模拟 SMLM 图像的各种数据集上进行训练,通过生成高斯块作为输出,学习预测点扩散函数(PSF)的位置。通过严格的评估,我们证明了 PSF 定位精度的显著提高,尤其是在传统方法难以解决的高密度标记样本中。此外,我们还采用了圆球检测作为后处理技术,以完善预测的 PSF 位置并提高定位精度。我们的研究强调了 CNN 在解决 SMLM 中的聚类难题方面的功效,从而提高了空间分辨率,使人们能够更深入地了解复杂的生物结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural network-assisted localization of clustered point spread functions in single-molecule localization microscopy.

Single-molecule localization microscopy (SMLM), which has revolutionized nanoscale imaging, faces challenges in densely labelled samples due to fluorophore clustering, leading to compromised localization accuracy. In this paper, we propose a novel convolutional neural network (CNN)-assisted approach to address the issue of locating the clustered fluorophores. Our CNN is trained on a diverse data set of simulated SMLM images where it learns to predict point spread function (PSF) locations by generating Gaussian blobs as output. Through rigorous evaluation, we demonstrate significant improvements in PSF localization accuracy, especially in densely labelled samples where traditional methods struggle. In addition, we employ blob detection as a post-processing technique to refine the predicted PSF locations and enhance localization precision. Our study underscores the efficacy of CNN in addressing clustering challenges in SMLM, thereby advancing spatial resolution and enabling deeper insights into complex biological structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信