通过组合转录因子基因组占位分析预测全基因组组织特异性增强子

IF 3.5 4区 生物学 Q1 Biochemistry, Genetics and Molecular Biology
Huma Shireen, Fatima Batool, Hizran Khatoon, Nazia Parveen, Noor Us Sehar, Irfan Hussain, Shahid Ali, Amir Ali Abbasi
{"title":"通过组合转录因子基因组占位分析预测全基因组组织特异性增强子","authors":"Huma Shireen, Fatima Batool, Hizran Khatoon, Nazia Parveen, Noor Us Sehar, Irfan Hussain, Shahid Ali, Amir Ali Abbasi","doi":"10.1002/1873-3468.15030","DOIUrl":null,"url":null,"abstract":"<p><p>Enhancers are non-coding cis-regulatory elements crucial for transcriptional regulation. Mutations in enhancers can disrupt gene regulation, leading to disease phenotypes. Identifying enhancers and their tissue-specific activity is challenging due to their lack of stereotyped sequences. This study presents a sequence-based computational model that uses combinatorial transcription factor (TF) genomic occupancy to predict tissue-specific enhancers. Trained on diverse datasets, including ENCODE and Vista enhancer browser data, the model predicted 25 000 forebrain-specific cis-regulatory modules (CRMs) in the human genome. Validation using biochemical features, disease-associated SNPs, and in vivo zebrafish analysis confirmed its effectiveness. This model aids in predicting enhancers lacking well-characterized chromatin features, complementing experimental approaches in tissue-specific enhancer discovery.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting genome-wide tissue-specific enhancers via combinatorial transcription factor genomic occupancy analysis.\",\"authors\":\"Huma Shireen, Fatima Batool, Hizran Khatoon, Nazia Parveen, Noor Us Sehar, Irfan Hussain, Shahid Ali, Amir Ali Abbasi\",\"doi\":\"10.1002/1873-3468.15030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Enhancers are non-coding cis-regulatory elements crucial for transcriptional regulation. Mutations in enhancers can disrupt gene regulation, leading to disease phenotypes. Identifying enhancers and their tissue-specific activity is challenging due to their lack of stereotyped sequences. This study presents a sequence-based computational model that uses combinatorial transcription factor (TF) genomic occupancy to predict tissue-specific enhancers. Trained on diverse datasets, including ENCODE and Vista enhancer browser data, the model predicted 25 000 forebrain-specific cis-regulatory modules (CRMs) in the human genome. Validation using biochemical features, disease-associated SNPs, and in vivo zebrafish analysis confirmed its effectiveness. This model aids in predicting enhancers lacking well-characterized chromatin features, complementing experimental approaches in tissue-specific enhancer discovery.</p>\",\"PeriodicalId\":12142,\"journal\":{\"name\":\"FEBS Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEBS Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/1873-3468.15030\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/1873-3468.15030","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

增强子是对转录调控至关重要的非编码顺式调控元件。增强子突变会破坏基因调控,导致疾病表型。由于增强子缺乏定型序列,识别增强子及其组织特异性活性具有挑战性。本研究提出了一种基于序列的计算模型,利用组合转录因子(TF)基因组占据来预测组织特异性增强子。该模型在不同的数据集(包括 ENCODE 和 Vista 增强子浏览器数据)上进行了训练,预测了人类基因组中 25000 个前脑特异性顺式调控模块(CRMs)。利用生化特征、疾病相关 SNP 和体内斑马鱼分析进行的验证证实了该模型的有效性。该模型有助于预测缺乏良好染色质特征的增强子,补充了发现组织特异性增强子的实验方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting genome-wide tissue-specific enhancers via combinatorial transcription factor genomic occupancy analysis.

Enhancers are non-coding cis-regulatory elements crucial for transcriptional regulation. Mutations in enhancers can disrupt gene regulation, leading to disease phenotypes. Identifying enhancers and their tissue-specific activity is challenging due to their lack of stereotyped sequences. This study presents a sequence-based computational model that uses combinatorial transcription factor (TF) genomic occupancy to predict tissue-specific enhancers. Trained on diverse datasets, including ENCODE and Vista enhancer browser data, the model predicted 25 000 forebrain-specific cis-regulatory modules (CRMs) in the human genome. Validation using biochemical features, disease-associated SNPs, and in vivo zebrafish analysis confirmed its effectiveness. This model aids in predicting enhancers lacking well-characterized chromatin features, complementing experimental approaches in tissue-specific enhancer discovery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FEBS Letters
FEBS Letters 生物-生化与分子生物学
CiteScore
7.00
自引率
2.90%
发文量
303
审稿时长
1.0 months
期刊介绍: FEBS Letters is one of the world''s leading journals in molecular biology and is renowned both for its quality of content and speed of production. Bringing together the most important developments in the molecular biosciences, FEBS Letters provides an international forum for Minireviews, Research Letters and Hypotheses that merit urgent publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信