扩大环糊精在正相和超/亚临界流体色谱模式中的应用,用于 1,4-二氢吡啶的手性分离。

IF 3.8 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS
{"title":"扩大环糊精在正相和超/亚临界流体色谱模式中的应用,用于 1,4-二氢吡啶的手性分离。","authors":"","doi":"10.1016/j.chroma.2024.465394","DOIUrl":null,"url":null,"abstract":"<div><div>Cyclodextrin-based stationary phases are important chiral selectors in liquid chromatography. These chiral selectors are most commonly used in the reversed-phase mode because native cyclodextrin assumes a torus conformation with a hydrophobic cavity, facilitating inclusion complexation in aqueous environments. However, the value of native and aliphatic-derivatized cyclodextrins in other modes, such as the normal phase liquid chromatography (NPLC) or super/subcritical fluid chromatography (SFC), remains unexplored. In this work, we report chiral separations of pharmaceutically relevant compounds with the 1,4-dihydropyridine (DHP) scaffold on a 2-hydroxypropyl-β-cyclodextrin (CD-RSP) stationary phase in NPLC and SFC modes. Although CD-RSP is conventionally considered only effective in the reversed-phase mode, we show that these compounds tend to separate better in other modes. This is particularly apparent for analytes with hydrogen-bonding moieties. We propose that the separation mechanism primarily depends on external adsorption rather than inclusion complexation. The negligible impact of a complexation-competitive additive on retention in non-aqueous modes further supports this claim. Additionally, van Deemter analysis demonstrated the efficiency and environmental benefit of using this stationary phase in the SFC mode, further highlighting the promise of aliphatic derivatized cyclodextrin stationary phases for greener separations.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expanding cyclodextrin use in normal phase and super/subcritical fluid chromatographic modes for the chiral separation of 1,4-dihydropyridines\",\"authors\":\"\",\"doi\":\"10.1016/j.chroma.2024.465394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cyclodextrin-based stationary phases are important chiral selectors in liquid chromatography. These chiral selectors are most commonly used in the reversed-phase mode because native cyclodextrin assumes a torus conformation with a hydrophobic cavity, facilitating inclusion complexation in aqueous environments. However, the value of native and aliphatic-derivatized cyclodextrins in other modes, such as the normal phase liquid chromatography (NPLC) or super/subcritical fluid chromatography (SFC), remains unexplored. In this work, we report chiral separations of pharmaceutically relevant compounds with the 1,4-dihydropyridine (DHP) scaffold on a 2-hydroxypropyl-β-cyclodextrin (CD-RSP) stationary phase in NPLC and SFC modes. Although CD-RSP is conventionally considered only effective in the reversed-phase mode, we show that these compounds tend to separate better in other modes. This is particularly apparent for analytes with hydrogen-bonding moieties. We propose that the separation mechanism primarily depends on external adsorption rather than inclusion complexation. The negligible impact of a complexation-competitive additive on retention in non-aqueous modes further supports this claim. Additionally, van Deemter analysis demonstrated the efficiency and environmental benefit of using this stationary phase in the SFC mode, further highlighting the promise of aliphatic derivatized cyclodextrin stationary phases for greener separations.</div></div>\",\"PeriodicalId\":347,\"journal\":{\"name\":\"Journal of Chromatography A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chromatography A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021967324007684\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography A","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021967324007684","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

环糊精基固定相是液相色谱中重要的手性选择剂。这些手性选择剂最常用于反相模式,因为原生环糊精具有疏水空腔的环状构象,有利于水环境中的包合物复合。然而,原生环糊精和脂肪族衍生环糊精在其他模式(如正相液相色谱(NPLC)或超/亚临界流体色谱(SFC))中的价值仍有待探索。在这项工作中,我们报告了在 2-hydroxypropyl-β-cyclodextrin (CD-RSP) 固定相上以 NPLC 和 SFC 模式对 1,4-dihydropyridine (DHP) 支架的药物相关化合物进行手性分离的情况。虽然 CD-RSP 通常只在反相模式下有效,但我们发现这些化合物在其他模式下的分离效果更好。这一点对于具有氢键分子的分析物尤为明显。我们提出,分离机制主要取决于外部吸附而非包合物络合。络合竞争添加剂对非水溶液模式保留的影响可以忽略不计,这进一步证实了我们的观点。此外,van Deemter 分析表明了在 SFC 模式下使用这种固定相的效率和环境效益,进一步凸显了脂肪族衍生环糊精固定相在绿色分离方面的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Expanding cyclodextrin use in normal phase and super/subcritical fluid chromatographic modes for the chiral separation of 1,4-dihydropyridines
Cyclodextrin-based stationary phases are important chiral selectors in liquid chromatography. These chiral selectors are most commonly used in the reversed-phase mode because native cyclodextrin assumes a torus conformation with a hydrophobic cavity, facilitating inclusion complexation in aqueous environments. However, the value of native and aliphatic-derivatized cyclodextrins in other modes, such as the normal phase liquid chromatography (NPLC) or super/subcritical fluid chromatography (SFC), remains unexplored. In this work, we report chiral separations of pharmaceutically relevant compounds with the 1,4-dihydropyridine (DHP) scaffold on a 2-hydroxypropyl-β-cyclodextrin (CD-RSP) stationary phase in NPLC and SFC modes. Although CD-RSP is conventionally considered only effective in the reversed-phase mode, we show that these compounds tend to separate better in other modes. This is particularly apparent for analytes with hydrogen-bonding moieties. We propose that the separation mechanism primarily depends on external adsorption rather than inclusion complexation. The negligible impact of a complexation-competitive additive on retention in non-aqueous modes further supports this claim. Additionally, van Deemter analysis demonstrated the efficiency and environmental benefit of using this stationary phase in the SFC mode, further highlighting the promise of aliphatic derivatized cyclodextrin stationary phases for greener separations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chromatography A
Journal of Chromatography A 化学-分析化学
CiteScore
7.90
自引率
14.60%
发文量
742
审稿时长
45 days
期刊介绍: The Journal of Chromatography A provides a forum for the publication of original research and critical reviews on all aspects of fundamental and applied separation science. The scope of the journal includes chromatography and related techniques, electromigration techniques (e.g. electrophoresis, electrochromatography), hyphenated and other multi-dimensional techniques, sample preparation, and detection methods such as mass spectrometry. Contributions consist mainly of research papers dealing with the theory of separation methods, instrumental developments and analytical and preparative applications of general interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信