{"title":"利用气相色谱-串联质谱法自动测定唾液中 3-6 环多环芳烃的直接浸泡-固相微萃取法。","authors":"","doi":"10.1016/j.chroma.2024.465404","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents a novel method for the analysis of polycyclic aromatic hydrocarbons (PAHs) in saliva samples using solid phase microextraction (SPME) coupled with gas chromatography-triple quadrupole mass spectrometry (GC-QqQ-MS). The protocol utilizes the latest commercially available overcoated fiber (PDMS/DVB/PDMS) for direct immersion extraction of the target analytes, enabling the determination of thirteen PAHs, including low-volatile compounds. The SPME extraction method was optimized using a central composite design (CCD). The evaluation of the fiber coating's robustness over time demonstrated excellent extraction performance with no significant degradation. The validation procedure confirmed good performance for all parameters, with LOQ values (100 ng/L for ten analytes and 500 ng/L for three analytes) comparable to other chromatographic methods. The environmental impact of the protocol was objectively assessed using two recently proposed metrics: the Green Analytical Procedure Index (GAPI) and the Analytical Greenness metric for sample preparation (AGREEprep). Both metrics indicated good overall environmental friendliness, with AGREEprep providing a satisfactory comprehensive score despite the use of highly impactful instrumentation. These characteristics make the developed method suitable for routine analysis in environmental and epidemiological monitoring.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A direct immersion-solid-phase microextraction method for the automated determination of 3- to 6-ring polycyclic aromatic hydrocarbons in saliva by gas-chromatography-tandem mass spectrometry\",\"authors\":\"\",\"doi\":\"10.1016/j.chroma.2024.465404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work presents a novel method for the analysis of polycyclic aromatic hydrocarbons (PAHs) in saliva samples using solid phase microextraction (SPME) coupled with gas chromatography-triple quadrupole mass spectrometry (GC-QqQ-MS). The protocol utilizes the latest commercially available overcoated fiber (PDMS/DVB/PDMS) for direct immersion extraction of the target analytes, enabling the determination of thirteen PAHs, including low-volatile compounds. The SPME extraction method was optimized using a central composite design (CCD). The evaluation of the fiber coating's robustness over time demonstrated excellent extraction performance with no significant degradation. The validation procedure confirmed good performance for all parameters, with LOQ values (100 ng/L for ten analytes and 500 ng/L for three analytes) comparable to other chromatographic methods. The environmental impact of the protocol was objectively assessed using two recently proposed metrics: the Green Analytical Procedure Index (GAPI) and the Analytical Greenness metric for sample preparation (AGREEprep). Both metrics indicated good overall environmental friendliness, with AGREEprep providing a satisfactory comprehensive score despite the use of highly impactful instrumentation. These characteristics make the developed method suitable for routine analysis in environmental and epidemiological monitoring.</div></div>\",\"PeriodicalId\":347,\"journal\":{\"name\":\"Journal of Chromatography A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chromatography A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021967324007787\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography A","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021967324007787","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
A direct immersion-solid-phase microextraction method for the automated determination of 3- to 6-ring polycyclic aromatic hydrocarbons in saliva by gas-chromatography-tandem mass spectrometry
This work presents a novel method for the analysis of polycyclic aromatic hydrocarbons (PAHs) in saliva samples using solid phase microextraction (SPME) coupled with gas chromatography-triple quadrupole mass spectrometry (GC-QqQ-MS). The protocol utilizes the latest commercially available overcoated fiber (PDMS/DVB/PDMS) for direct immersion extraction of the target analytes, enabling the determination of thirteen PAHs, including low-volatile compounds. The SPME extraction method was optimized using a central composite design (CCD). The evaluation of the fiber coating's robustness over time demonstrated excellent extraction performance with no significant degradation. The validation procedure confirmed good performance for all parameters, with LOQ values (100 ng/L for ten analytes and 500 ng/L for three analytes) comparable to other chromatographic methods. The environmental impact of the protocol was objectively assessed using two recently proposed metrics: the Green Analytical Procedure Index (GAPI) and the Analytical Greenness metric for sample preparation (AGREEprep). Both metrics indicated good overall environmental friendliness, with AGREEprep providing a satisfactory comprehensive score despite the use of highly impactful instrumentation. These characteristics make the developed method suitable for routine analysis in environmental and epidemiological monitoring.
期刊介绍:
The Journal of Chromatography A provides a forum for the publication of original research and critical reviews on all aspects of fundamental and applied separation science. The scope of the journal includes chromatography and related techniques, electromigration techniques (e.g. electrophoresis, electrochromatography), hyphenated and other multi-dimensional techniques, sample preparation, and detection methods such as mass spectrometry. Contributions consist mainly of research papers dealing with the theory of separation methods, instrumental developments and analytical and preparative applications of general interest.