利用光子计数计算机断层扫描对骨矿密度进行量化及其对检测骨重塑的意义。

IF 5.1 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Jilmen Quintiens, Walter Coudyzer, Melissa Bevers, Evie Vereecke, Joop P van den Bergh, Sarah L Manske, G Harry van Lenthe
{"title":"利用光子计数计算机断层扫描对骨矿密度进行量化及其对检测骨重塑的意义。","authors":"Jilmen Quintiens, Walter Coudyzer, Melissa Bevers, Evie Vereecke, Joop P van den Bergh, Sarah L Manske, G Harry van Lenthe","doi":"10.1093/jbmr/zjae163","DOIUrl":null,"url":null,"abstract":"<p><p>High-Resolution peripheral quantitative CT (HR-pQCT) has become standard practice when quantifying volumetric bone mineral density (vBMD) in vivo. Yet, it is only accessible to peripheral sites, with small fields of view and lengthy scanning times. This limits general applicability in clinical workflows. The goal of this study was to assess the potential of Photon Counting CT (PCCT) in quantitative bone imaging. Using the European Forearm Phantom, PCCT was calibrated to hydroxy-apatite (HA) density. Eight cadaveric forearms were scanned twice with PCCT, and once with HR-pQCT. The dominant forearm of two volunteers was scanned twice with PCCT. In each scan the carpals were delineated. At bone-level, accuracy was assessed with a paired measurement of total vBMD (Tt.vBMD) calculated with PCCT and HR-pQCT. At voxel-level, repeatability was assessed by image registration and voxel-wise subtraction of the ex vivo PCCT scans. In an ideal scenario, this difference would be zero; any deviation was interpreted as falsely detected remodelling. For clinical usage, the least detectable remodelling was determined by finding a threshold in the PCCT difference image that resulted in a classification of bone formation and resorption below acceptable noise levels (<0.5%). The paired measurement of Tt.vBMD had a Pearson correlation of 0.986. Compared to HR-pQCT, PCCT showed a bias of 7.46 mgHA/cm3. At voxel-level, the repeated PCCT scans showed a bias of 17.66 mgHA/cm3 and standard error of 96.23 mgHA/cm3. Least detectable remodelling was found to be 250 mgHA/cm3, for which 0.37% of the voxels was incorrectly classified as newly added or resorbed bone. In vivo, this volume increased to 0.97%. Based on the cadaver data we conclude that PCCT can be used to quantify vBMD and bone turnover. We provided proof of principle that this technique is also accurate in vivo, hence, that it has high potential for clinical applications.</p>","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Quantification of Bone Mineral Density Using Photon Counting Computed Tomography and its Implications for Detecting Bone Remodelling.\",\"authors\":\"Jilmen Quintiens, Walter Coudyzer, Melissa Bevers, Evie Vereecke, Joop P van den Bergh, Sarah L Manske, G Harry van Lenthe\",\"doi\":\"10.1093/jbmr/zjae163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High-Resolution peripheral quantitative CT (HR-pQCT) has become standard practice when quantifying volumetric bone mineral density (vBMD) in vivo. Yet, it is only accessible to peripheral sites, with small fields of view and lengthy scanning times. This limits general applicability in clinical workflows. The goal of this study was to assess the potential of Photon Counting CT (PCCT) in quantitative bone imaging. Using the European Forearm Phantom, PCCT was calibrated to hydroxy-apatite (HA) density. Eight cadaveric forearms were scanned twice with PCCT, and once with HR-pQCT. The dominant forearm of two volunteers was scanned twice with PCCT. In each scan the carpals were delineated. At bone-level, accuracy was assessed with a paired measurement of total vBMD (Tt.vBMD) calculated with PCCT and HR-pQCT. At voxel-level, repeatability was assessed by image registration and voxel-wise subtraction of the ex vivo PCCT scans. In an ideal scenario, this difference would be zero; any deviation was interpreted as falsely detected remodelling. For clinical usage, the least detectable remodelling was determined by finding a threshold in the PCCT difference image that resulted in a classification of bone formation and resorption below acceptable noise levels (<0.5%). The paired measurement of Tt.vBMD had a Pearson correlation of 0.986. Compared to HR-pQCT, PCCT showed a bias of 7.46 mgHA/cm3. At voxel-level, the repeated PCCT scans showed a bias of 17.66 mgHA/cm3 and standard error of 96.23 mgHA/cm3. Least detectable remodelling was found to be 250 mgHA/cm3, for which 0.37% of the voxels was incorrectly classified as newly added or resorbed bone. In vivo, this volume increased to 0.97%. Based on the cadaver data we conclude that PCCT can be used to quantify vBMD and bone turnover. We provided proof of principle that this technique is also accurate in vivo, hence, that it has high potential for clinical applications.</p>\",\"PeriodicalId\":185,\"journal\":{\"name\":\"Journal of Bone and Mineral Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bone and Mineral Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jbmr/zjae163\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone and Mineral Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jbmr/zjae163","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

高分辨率外周定量 CT(HR-pQCT)已成为量化体内体积骨密度(vBMD)的标准方法。然而,它只能用于外周部位,视野小,扫描时间长。这限制了其在临床工作流程中的普遍适用性。本研究的目的是评估光子计数 CT(PCCT)在骨定量成像中的潜力。利用欧洲前臂模型,将 PCCT 校准为羟基磷灰石(HA)密度。用 PCCT 扫描了八只尸体前臂两次,用 HR-pQCT 扫描了一次。两名志愿者的优势前臂用 PCCT 扫描了两次。每次扫描都对腕骨进行了划定。在骨骼层面,通过对使用 PCCT 和 HR-pQCT 计算出的总 vBMD(Tt.vBMD)进行配对测量来评估准确性。在体素层面,通过图像注册和体素减去体外 PCCT 扫描来评估可重复性。在理想情况下,这种差异为零;任何偏差都被解释为错误检测到的重塑。为便于临床使用,在 PCCT 差值图像中找到一个阈值,使骨形成和骨吸收的分类低于可接受的噪声水平,从而确定最不易检测到的重塑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Quantification of Bone Mineral Density Using Photon Counting Computed Tomography and its Implications for Detecting Bone Remodelling.

High-Resolution peripheral quantitative CT (HR-pQCT) has become standard practice when quantifying volumetric bone mineral density (vBMD) in vivo. Yet, it is only accessible to peripheral sites, with small fields of view and lengthy scanning times. This limits general applicability in clinical workflows. The goal of this study was to assess the potential of Photon Counting CT (PCCT) in quantitative bone imaging. Using the European Forearm Phantom, PCCT was calibrated to hydroxy-apatite (HA) density. Eight cadaveric forearms were scanned twice with PCCT, and once with HR-pQCT. The dominant forearm of two volunteers was scanned twice with PCCT. In each scan the carpals were delineated. At bone-level, accuracy was assessed with a paired measurement of total vBMD (Tt.vBMD) calculated with PCCT and HR-pQCT. At voxel-level, repeatability was assessed by image registration and voxel-wise subtraction of the ex vivo PCCT scans. In an ideal scenario, this difference would be zero; any deviation was interpreted as falsely detected remodelling. For clinical usage, the least detectable remodelling was determined by finding a threshold in the PCCT difference image that resulted in a classification of bone formation and resorption below acceptable noise levels (<0.5%). The paired measurement of Tt.vBMD had a Pearson correlation of 0.986. Compared to HR-pQCT, PCCT showed a bias of 7.46 mgHA/cm3. At voxel-level, the repeated PCCT scans showed a bias of 17.66 mgHA/cm3 and standard error of 96.23 mgHA/cm3. Least detectable remodelling was found to be 250 mgHA/cm3, for which 0.37% of the voxels was incorrectly classified as newly added or resorbed bone. In vivo, this volume increased to 0.97%. Based on the cadaver data we conclude that PCCT can be used to quantify vBMD and bone turnover. We provided proof of principle that this technique is also accurate in vivo, hence, that it has high potential for clinical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Bone and Mineral Research
Journal of Bone and Mineral Research 医学-内分泌学与代谢
CiteScore
11.30
自引率
6.50%
发文量
257
审稿时长
2 months
期刊介绍: The Journal of Bone and Mineral Research (JBMR) publishes highly impactful original manuscripts, reviews, and special articles on basic, translational and clinical investigations relevant to the musculoskeletal system and mineral metabolism. Specifically, the journal is interested in original research on the biology and physiology of skeletal tissues, interdisciplinary research spanning the musculoskeletal and other systems, including but not limited to immunology, hematology, energy metabolism, cancer biology, and neurology, and systems biology topics using large scale “-omics” approaches. The journal welcomes clinical research on the pathophysiology, treatment and prevention of osteoporosis and fractures, as well as sarcopenia, disorders of bone and mineral metabolism, and rare or genetically determined bone diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信