{"title":"用于生物热感应的稀土发光纳米温度计","authors":"Yishuo Sun, Mengya Kong, Jiaming Ke, Yuyang Gu, Fuyou Li, Wei Feng","doi":"10.1016/j.ccr.2024.216222","DOIUrl":null,"url":null,"abstract":"<div><div>Temperature is a fundamental parameter closely related to physiological status in various biological cycles. Due to the significant role that temperature plays in life science, thermal sensing has gained extensive attention in the field of biological detection. Thermal sensing based on luminescence signals shows certain advantages, such as being non-invasive and fast. By further reducing the size of luminescent thermometers to the nanoscale, it is expected to accurately detect temperature in small biological settings. Among several nanothermometers, rare earth luminescent nanothermometers exhibit distinctive thermal sensing properties, making them excellent for measuring biological temperatures. This review primarily discusses thermal sensing methods for optimal detection performance. The optical systems used as thermal sensing equipment and the thermal sensing evaluation indexes as the evaluation standards are subsequently summarized. For specific biological scenarios, the selection of thermal sensing methods based on the requirements of relevant biological parameters are specifically analyzed. In particular, state-of-the-art biological applications based on the unique rare earth luminescent properties are highlighted for accurate thermal measurement from the cellular level to the organism. With a multidisciplinary approach that involves material, optical, and biological analysis, the review aims to provide guidance and propose the prospects of rare earth nanothermometers for biological thermal sensing.</div></div>","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":"523 ","pages":"Article 216222"},"PeriodicalIF":20.3000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rare earth luminescent nanothermometers for biological thermal sensing\",\"authors\":\"Yishuo Sun, Mengya Kong, Jiaming Ke, Yuyang Gu, Fuyou Li, Wei Feng\",\"doi\":\"10.1016/j.ccr.2024.216222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Temperature is a fundamental parameter closely related to physiological status in various biological cycles. Due to the significant role that temperature plays in life science, thermal sensing has gained extensive attention in the field of biological detection. Thermal sensing based on luminescence signals shows certain advantages, such as being non-invasive and fast. By further reducing the size of luminescent thermometers to the nanoscale, it is expected to accurately detect temperature in small biological settings. Among several nanothermometers, rare earth luminescent nanothermometers exhibit distinctive thermal sensing properties, making them excellent for measuring biological temperatures. This review primarily discusses thermal sensing methods for optimal detection performance. The optical systems used as thermal sensing equipment and the thermal sensing evaluation indexes as the evaluation standards are subsequently summarized. For specific biological scenarios, the selection of thermal sensing methods based on the requirements of relevant biological parameters are specifically analyzed. In particular, state-of-the-art biological applications based on the unique rare earth luminescent properties are highlighted for accurate thermal measurement from the cellular level to the organism. With a multidisciplinary approach that involves material, optical, and biological analysis, the review aims to provide guidance and propose the prospects of rare earth nanothermometers for biological thermal sensing.</div></div>\",\"PeriodicalId\":289,\"journal\":{\"name\":\"Coordination Chemistry Reviews\",\"volume\":\"523 \",\"pages\":\"Article 216222\"},\"PeriodicalIF\":20.3000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coordination Chemistry Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S001085452400568X\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coordination Chemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001085452400568X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Rare earth luminescent nanothermometers for biological thermal sensing
Temperature is a fundamental parameter closely related to physiological status in various biological cycles. Due to the significant role that temperature plays in life science, thermal sensing has gained extensive attention in the field of biological detection. Thermal sensing based on luminescence signals shows certain advantages, such as being non-invasive and fast. By further reducing the size of luminescent thermometers to the nanoscale, it is expected to accurately detect temperature in small biological settings. Among several nanothermometers, rare earth luminescent nanothermometers exhibit distinctive thermal sensing properties, making them excellent for measuring biological temperatures. This review primarily discusses thermal sensing methods for optimal detection performance. The optical systems used as thermal sensing equipment and the thermal sensing evaluation indexes as the evaluation standards are subsequently summarized. For specific biological scenarios, the selection of thermal sensing methods based on the requirements of relevant biological parameters are specifically analyzed. In particular, state-of-the-art biological applications based on the unique rare earth luminescent properties are highlighted for accurate thermal measurement from the cellular level to the organism. With a multidisciplinary approach that involves material, optical, and biological analysis, the review aims to provide guidance and propose the prospects of rare earth nanothermometers for biological thermal sensing.
期刊介绍:
Coordination Chemistry Reviews offers rapid publication of review articles on current and significant topics in coordination chemistry, encompassing organometallic, supramolecular, theoretical, and bioinorganic chemistry. It also covers catalysis, materials chemistry, and metal-organic frameworks from a coordination chemistry perspective. Reviews summarize recent developments or discuss specific techniques, welcoming contributions from both established and emerging researchers.
The journal releases special issues on timely subjects, including those featuring contributions from specific regions or conferences. Occasional full-length book articles are also featured. Additionally, special volumes cover annual reviews of main group chemistry, transition metal group chemistry, and organometallic chemistry. These comprehensive reviews are vital resources for those engaged in coordination chemistry, further establishing Coordination Chemistry Reviews as a hub for insightful surveys in inorganic and physical inorganic chemistry.