Qiannan Ding, Bo Tian, Chunpeng Chen, Yuekai Hu, Xue Li
{"title":"利用深度学习从哨兵-1 图像中识别中国海上风力涡轮机的时空分布特征","authors":"Qiannan Ding, Bo Tian, Chunpeng Chen, Yuekai Hu, Xue Li","doi":"10.1080/15481603.2024.2407389","DOIUrl":null,"url":null,"abstract":"Offshore wind power is a crucial clean energy source for coastal countries and advances blue economies. Accurate spatial mapping of offshore wind turbines supports energy assessment and the sustain...","PeriodicalId":55091,"journal":{"name":"GIScience & Remote Sensing","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying the spatio-temporal distribution characteristics of offshore wind turbines in China from Sentinel-1 imagery using deep learning\",\"authors\":\"Qiannan Ding, Bo Tian, Chunpeng Chen, Yuekai Hu, Xue Li\",\"doi\":\"10.1080/15481603.2024.2407389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Offshore wind power is a crucial clean energy source for coastal countries and advances blue economies. Accurate spatial mapping of offshore wind turbines supports energy assessment and the sustain...\",\"PeriodicalId\":55091,\"journal\":{\"name\":\"GIScience & Remote Sensing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GIScience & Remote Sensing\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/15481603.2024.2407389\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GIScience & Remote Sensing","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/15481603.2024.2407389","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Identifying the spatio-temporal distribution characteristics of offshore wind turbines in China from Sentinel-1 imagery using deep learning
Offshore wind power is a crucial clean energy source for coastal countries and advances blue economies. Accurate spatial mapping of offshore wind turbines supports energy assessment and the sustain...
期刊介绍:
GIScience & Remote Sensing publishes original, peer-reviewed articles associated with geographic information systems (GIS), remote sensing of the environment (including digital image processing), geocomputation, spatial data mining, and geographic environmental modelling. Papers reflecting both basic and applied research are published.