SpaGRA:图增强技术有助于空间解析转录组学的领域识别。

IF 6.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Journal of Genetics and Genomics Pub Date : 2025-01-01 Epub Date: 2024-10-02 DOI:10.1016/j.jgg.2024.09.015
Xue Sun, Wei Zhang, Wenrui Li, Na Yu, Daoliang Zhang, Qi Zou, Qiongye Dong, Xianglin Zhang, Zhiping Liu, Zhiyuan Yuan, Rui Gao
{"title":"SpaGRA:图增强技术有助于空间解析转录组学的领域识别。","authors":"Xue Sun, Wei Zhang, Wenrui Li, Na Yu, Daoliang Zhang, Qi Zou, Qiongye Dong, Xianglin Zhang, Zhiping Liu, Zhiyuan Yuan, Rui Gao","doi":"10.1016/j.jgg.2024.09.015","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in spatially resolved transcriptomics (SRT) have provided new opportunities for characterizing spatial structures of various tissues. Graph-based geometric deep learning has gained widespread adoption for spatial domain identification tasks. Currently, most methods define adjacency relation between cells or spots by their spatial distance in SRT data, which overlooks key biological interactions like gene expression similarities, and leads to inaccuracies in spatial domain identification. To tackle this challenge, we propose a novel method, SpaGRA (https://github.com/sunxue-yy/SpaGRA), for automatic multi-relationship construction based on graph augmentation. SpaGRA uses spatial distance as prior knowledge and dynamically adjusts edge weights with multi-head graph attention networks (GATs). This helps SpaGRA to uncover diverse node relationships and enhance message passing in geometric contrastive learning. Additionally, SpaGRA uses these multi-view relationships to construct negative samples, addressing sampling bias posed by random selection. Experimental results show that SpaGRA presents superior domain identification performance on multiple datasets generated from different protocols. Using SpaGRA, we analyze the functional regions in the mouse hypothalamus, identify key genes related to heart development in mouse embryos, and observe cancer-associated fibroblasts enveloping cancer cells in the latest Visium HD data. Overall, SpaGRA can effectively characterize spatial structures across diverse SRT datasets.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":"93-104"},"PeriodicalIF":6.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SpaGRA: Graph augmentation facilitates domain identification for spatially resolved transcriptomics.\",\"authors\":\"Xue Sun, Wei Zhang, Wenrui Li, Na Yu, Daoliang Zhang, Qi Zou, Qiongye Dong, Xianglin Zhang, Zhiping Liu, Zhiyuan Yuan, Rui Gao\",\"doi\":\"10.1016/j.jgg.2024.09.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent advances in spatially resolved transcriptomics (SRT) have provided new opportunities for characterizing spatial structures of various tissues. Graph-based geometric deep learning has gained widespread adoption for spatial domain identification tasks. Currently, most methods define adjacency relation between cells or spots by their spatial distance in SRT data, which overlooks key biological interactions like gene expression similarities, and leads to inaccuracies in spatial domain identification. To tackle this challenge, we propose a novel method, SpaGRA (https://github.com/sunxue-yy/SpaGRA), for automatic multi-relationship construction based on graph augmentation. SpaGRA uses spatial distance as prior knowledge and dynamically adjusts edge weights with multi-head graph attention networks (GATs). This helps SpaGRA to uncover diverse node relationships and enhance message passing in geometric contrastive learning. Additionally, SpaGRA uses these multi-view relationships to construct negative samples, addressing sampling bias posed by random selection. Experimental results show that SpaGRA presents superior domain identification performance on multiple datasets generated from different protocols. Using SpaGRA, we analyze the functional regions in the mouse hypothalamus, identify key genes related to heart development in mouse embryos, and observe cancer-associated fibroblasts enveloping cancer cells in the latest Visium HD data. Overall, SpaGRA can effectively characterize spatial structures across diverse SRT datasets.</p>\",\"PeriodicalId\":54825,\"journal\":{\"name\":\"Journal of Genetics and Genomics\",\"volume\":\" \",\"pages\":\"93-104\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Genetics and Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jgg.2024.09.015\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jgg.2024.09.015","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

空间分辨转录组学(SRT)的最新进展为描述各种组织的空间结构提供了新的机会。基于图的几何深度学习已被广泛应用于空间域识别任务。目前,大多数方法通过 SRT 数据中细胞或斑点的空间距离来定义它们之间的邻接关系,这忽略了基因表达相似性等关键的生物相互作用,导致空间域识别不准确。为了应对这一挑战,我们提出了一种基于图增强的自动多关系构建新方法 SpaGRA (https://github.com/sunxue-yy/SpaGRA)。SpaGRA 将空间距离作为先验知识,并通过多头图注意网络 (GAT) 动态调整边缘权重。这有助于 SpaGRA 发现不同的节点关系,并增强几何对比学习中的信息传递。此外,SpaGRA 还利用这些多视图关系构建负样本,解决了随机选择带来的取样偏差问题。实验结果表明,SpaGRA 在由不同协议生成的多个数据集上表现出卓越的领域识别性能。利用 SpaGRA,我们分析了小鼠下丘脑的功能区,确定了与小鼠胚胎心脏发育相关的关键基因,并在最新的 Visium HD 数据中观察到了包裹癌细胞的癌症相关成纤维细胞。总之,SpaGRA 可以有效地描述不同 SRT 数据集的空间结构特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SpaGRA: Graph augmentation facilitates domain identification for spatially resolved transcriptomics.

Recent advances in spatially resolved transcriptomics (SRT) have provided new opportunities for characterizing spatial structures of various tissues. Graph-based geometric deep learning has gained widespread adoption for spatial domain identification tasks. Currently, most methods define adjacency relation between cells or spots by their spatial distance in SRT data, which overlooks key biological interactions like gene expression similarities, and leads to inaccuracies in spatial domain identification. To tackle this challenge, we propose a novel method, SpaGRA (https://github.com/sunxue-yy/SpaGRA), for automatic multi-relationship construction based on graph augmentation. SpaGRA uses spatial distance as prior knowledge and dynamically adjusts edge weights with multi-head graph attention networks (GATs). This helps SpaGRA to uncover diverse node relationships and enhance message passing in geometric contrastive learning. Additionally, SpaGRA uses these multi-view relationships to construct negative samples, addressing sampling bias posed by random selection. Experimental results show that SpaGRA presents superior domain identification performance on multiple datasets generated from different protocols. Using SpaGRA, we analyze the functional regions in the mouse hypothalamus, identify key genes related to heart development in mouse embryos, and observe cancer-associated fibroblasts enveloping cancer cells in the latest Visium HD data. Overall, SpaGRA can effectively characterize spatial structures across diverse SRT datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Genetics and Genomics
Journal of Genetics and Genomics 生物-生化与分子生物学
CiteScore
8.20
自引率
3.40%
发文量
4756
审稿时长
14 days
期刊介绍: The Journal of Genetics and Genomics (JGG, formerly known as Acta Genetica Sinica ) is an international journal publishing peer-reviewed articles of novel and significant discoveries in the fields of genetics and genomics. Topics of particular interest include but are not limited to molecular genetics, developmental genetics, cytogenetics, epigenetics, medical genetics, population and evolutionary genetics, genomics and functional genomics as well as bioinformatics and computational biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信