外围知觉检测性能的微弛豫抑制是眼窝视觉图像外观的函数。

IF 2 4区 心理学 Q2 OPHTHALMOLOGY
Julia Greilich, Matthias P Baumann, Ziad M Hafed
{"title":"外围知觉检测性能的微弛豫抑制是眼窝视觉图像外观的函数。","authors":"Julia Greilich, Matthias P Baumann, Ziad M Hafed","doi":"10.1167/jov.24.11.3","DOIUrl":null,"url":null,"abstract":"<p><p>Microsaccades are known to be associated with a deficit in perceptual detection performance for brief probe flashes presented in their temporal vicinity. However, it is still not clear how such a deficit might depend on the visual environment across which microsaccades are generated. Here, and motivated by studies demonstrating an interaction between visual background image appearance and perceptual suppression strength associated with large saccades, we probed peripheral perceptual detection performance of human subjects while they generated microsaccades over three different visual backgrounds. Subjects fixated near the center of a low spatial frequency grating, a high spatial frequency grating, or a small white fixation spot over an otherwise gray background. When a computer process detected a microsaccade, it presented a brief peripheral probe flash at one of four locations (over a uniform gray background) and at different times. After collecting full psychometric curves, we found that both perceptual detection thresholds and slopes of psychometric curves were impaired for peripheral flashes in the immediate temporal vicinity of microsaccades, and they recovered with later flash times. Importantly, the threshold elevations, but not the psychometric slope reductions, were stronger for the white fixation spot than for either of the two gratings. Thus, like with larger saccades, microsaccadic suppression strength can show a certain degree of image dependence. However, unlike with larger saccades, stronger microsaccadic suppression did not occur with low spatial frequency textures. This observation might reflect the different spatiotemporal retinal transients associated with the small microsaccades in our study versus larger saccades.</p>","PeriodicalId":49955,"journal":{"name":"Journal of Vision","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457924/pdf/","citationCount":"0","resultStr":"{\"title\":\"Microsaccadic suppression of peripheral perceptual detection performance as a function of foveated visual image appearance.\",\"authors\":\"Julia Greilich, Matthias P Baumann, Ziad M Hafed\",\"doi\":\"10.1167/jov.24.11.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microsaccades are known to be associated with a deficit in perceptual detection performance for brief probe flashes presented in their temporal vicinity. However, it is still not clear how such a deficit might depend on the visual environment across which microsaccades are generated. Here, and motivated by studies demonstrating an interaction between visual background image appearance and perceptual suppression strength associated with large saccades, we probed peripheral perceptual detection performance of human subjects while they generated microsaccades over three different visual backgrounds. Subjects fixated near the center of a low spatial frequency grating, a high spatial frequency grating, or a small white fixation spot over an otherwise gray background. When a computer process detected a microsaccade, it presented a brief peripheral probe flash at one of four locations (over a uniform gray background) and at different times. After collecting full psychometric curves, we found that both perceptual detection thresholds and slopes of psychometric curves were impaired for peripheral flashes in the immediate temporal vicinity of microsaccades, and they recovered with later flash times. Importantly, the threshold elevations, but not the psychometric slope reductions, were stronger for the white fixation spot than for either of the two gratings. Thus, like with larger saccades, microsaccadic suppression strength can show a certain degree of image dependence. However, unlike with larger saccades, stronger microsaccadic suppression did not occur with low spatial frequency textures. This observation might reflect the different spatiotemporal retinal transients associated with the small microsaccades in our study versus larger saccades.</p>\",\"PeriodicalId\":49955,\"journal\":{\"name\":\"Journal of Vision\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457924/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vision\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1167/jov.24.11.3\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vision","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1167/jov.24.11.3","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,微注视与在其时间附近出现的短暂探测闪光的知觉检测性能缺陷有关。然而,这种缺陷如何取决于产生微闪烁的视觉环境仍不清楚。在此,受视觉背景图像外观和与大盲动相关的知觉抑制强度之间相互作用的研究启发,我们探测了人类受试者在三种不同的视觉背景下产生微注视时的外围知觉检测性能。受试者将视线固定在低空间频率光栅、高空间频率光栅或其他灰色背景上的白色小固定点的中心附近。当计算机程序检测到微停顿时,它会在四个位置之一(统一的灰色背景)和不同的时间显示短暂的外围探针闪光。在收集了完整的心理测量曲线后,我们发现在微停顿发生的时间附近,外围闪光的知觉检测阈值和心理测量曲线斜率都会受到影响,而随着闪光时间的延长,它们又会恢复。重要的是,白色固定点的阈值升高比两个光栅的阈值升高更明显,但心理测量斜率的降低却不明显。因此,与较大的囊回一样,微囊回抑制强度也会表现出一定程度的图像依赖性。然而,与较大的囊状移动不同,低空间频率纹理不会产生更强的微注视抑制。这一观察结果可能反映了我们的研究中与小的微注视相关的视网膜时空瞬态与大的注视相关的视网膜时空瞬态不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microsaccadic suppression of peripheral perceptual detection performance as a function of foveated visual image appearance.

Microsaccades are known to be associated with a deficit in perceptual detection performance for brief probe flashes presented in their temporal vicinity. However, it is still not clear how such a deficit might depend on the visual environment across which microsaccades are generated. Here, and motivated by studies demonstrating an interaction between visual background image appearance and perceptual suppression strength associated with large saccades, we probed peripheral perceptual detection performance of human subjects while they generated microsaccades over three different visual backgrounds. Subjects fixated near the center of a low spatial frequency grating, a high spatial frequency grating, or a small white fixation spot over an otherwise gray background. When a computer process detected a microsaccade, it presented a brief peripheral probe flash at one of four locations (over a uniform gray background) and at different times. After collecting full psychometric curves, we found that both perceptual detection thresholds and slopes of psychometric curves were impaired for peripheral flashes in the immediate temporal vicinity of microsaccades, and they recovered with later flash times. Importantly, the threshold elevations, but not the psychometric slope reductions, were stronger for the white fixation spot than for either of the two gratings. Thus, like with larger saccades, microsaccadic suppression strength can show a certain degree of image dependence. However, unlike with larger saccades, stronger microsaccadic suppression did not occur with low spatial frequency textures. This observation might reflect the different spatiotemporal retinal transients associated with the small microsaccades in our study versus larger saccades.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Vision
Journal of Vision 医学-眼科学
CiteScore
2.90
自引率
5.60%
发文量
218
审稿时长
3-6 weeks
期刊介绍: Exploring all aspects of biological visual function, including spatial vision, perception, low vision, color vision and more, spanning the fields of neuroscience, psychology and psychophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信