Keying Li, Huilin Wang, Matthew Hoi Kin Chau, Zirui Dong, Ye Cao, Yu Zheng, Tak Yeung Leung, Kwong Wai Choy, Yuanfang Zhu
{"title":"基因组失衡在产前肾脏和泌尿道先天性异常中的作用:一项多中心队列研究。","authors":"Keying Li, Huilin Wang, Matthew Hoi Kin Chau, Zirui Dong, Ye Cao, Yu Zheng, Tak Yeung Leung, Kwong Wai Choy, Yuanfang Zhu","doi":"10.1002/pd.6674","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To investigate the diagnostic utility of copy-number variant (CNV) detection by chromosomal microarray analysis (CMA) and genotype-phenotype associations in prenatal congenital anomalies of the kidney and urinary tract (CAKUT).</p><p><strong>Methods: </strong>This is a retrospective multi-center study of CNV analysis in 457 fetuses with ultrasound-detected CAKUT and normal karyotypes. Cohorts from published studies were included for further pooled analyses (N = 2746). A literature review of single-nucleotide variant (SNV) and small insertions and deletions (Indel) analysis by whole-exome sequencing was performed to investigate monogenic causes.</p><p><strong>Results: </strong>In our multi-center cohort, 5.3% (24/457) of fetuses had pathogenic CNVs (pCNV); 3.9% (14/359) and 10.2% (10/98) in isolated and non-isolated CAKUT, respectively. Fetuses with isolated hyperechogenic kidneys (HEK) had the highest incidence of having pCNVs. In the literature review, 6.6% (180/2746) of fetuses carried pCNVs; 6.1% and 7.5% in isolated and non-isolated CAKUT, respectively. SNV/Indel analysis provided at least 16.5% (63/381) additional diagnostic yield beyond CNV analysis; 12.8% and 23.8% in isolated and non-isolated CAKUT, respectively.</p><p><strong>Conclusion: </strong>pCNVs comprise a significant proportion of genetic diagnostic findings in prenatal CAKUT, most commonly detected in fetuses with isolated HEK, MCDK, renal agenesis, and non-isolated CAKUT. Monogenic causes should be considered when karyotyping and CMA are nondiagnostic.</p>","PeriodicalId":20387,"journal":{"name":"Prenatal Diagnosis","volume":" ","pages":"1451-1461"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contribution of Genomic Imbalance in Prenatal Congenital Anomalies of the Kidney and Urinary Tract: A Multi-Center Cohort Study.\",\"authors\":\"Keying Li, Huilin Wang, Matthew Hoi Kin Chau, Zirui Dong, Ye Cao, Yu Zheng, Tak Yeung Leung, Kwong Wai Choy, Yuanfang Zhu\",\"doi\":\"10.1002/pd.6674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>To investigate the diagnostic utility of copy-number variant (CNV) detection by chromosomal microarray analysis (CMA) and genotype-phenotype associations in prenatal congenital anomalies of the kidney and urinary tract (CAKUT).</p><p><strong>Methods: </strong>This is a retrospective multi-center study of CNV analysis in 457 fetuses with ultrasound-detected CAKUT and normal karyotypes. Cohorts from published studies were included for further pooled analyses (N = 2746). A literature review of single-nucleotide variant (SNV) and small insertions and deletions (Indel) analysis by whole-exome sequencing was performed to investigate monogenic causes.</p><p><strong>Results: </strong>In our multi-center cohort, 5.3% (24/457) of fetuses had pathogenic CNVs (pCNV); 3.9% (14/359) and 10.2% (10/98) in isolated and non-isolated CAKUT, respectively. Fetuses with isolated hyperechogenic kidneys (HEK) had the highest incidence of having pCNVs. In the literature review, 6.6% (180/2746) of fetuses carried pCNVs; 6.1% and 7.5% in isolated and non-isolated CAKUT, respectively. SNV/Indel analysis provided at least 16.5% (63/381) additional diagnostic yield beyond CNV analysis; 12.8% and 23.8% in isolated and non-isolated CAKUT, respectively.</p><p><strong>Conclusion: </strong>pCNVs comprise a significant proportion of genetic diagnostic findings in prenatal CAKUT, most commonly detected in fetuses with isolated HEK, MCDK, renal agenesis, and non-isolated CAKUT. Monogenic causes should be considered when karyotyping and CMA are nondiagnostic.</p>\",\"PeriodicalId\":20387,\"journal\":{\"name\":\"Prenatal Diagnosis\",\"volume\":\" \",\"pages\":\"1451-1461\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Prenatal Diagnosis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/pd.6674\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prenatal Diagnosis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pd.6674","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Contribution of Genomic Imbalance in Prenatal Congenital Anomalies of the Kidney and Urinary Tract: A Multi-Center Cohort Study.
Objectives: To investigate the diagnostic utility of copy-number variant (CNV) detection by chromosomal microarray analysis (CMA) and genotype-phenotype associations in prenatal congenital anomalies of the kidney and urinary tract (CAKUT).
Methods: This is a retrospective multi-center study of CNV analysis in 457 fetuses with ultrasound-detected CAKUT and normal karyotypes. Cohorts from published studies were included for further pooled analyses (N = 2746). A literature review of single-nucleotide variant (SNV) and small insertions and deletions (Indel) analysis by whole-exome sequencing was performed to investigate monogenic causes.
Results: In our multi-center cohort, 5.3% (24/457) of fetuses had pathogenic CNVs (pCNV); 3.9% (14/359) and 10.2% (10/98) in isolated and non-isolated CAKUT, respectively. Fetuses with isolated hyperechogenic kidneys (HEK) had the highest incidence of having pCNVs. In the literature review, 6.6% (180/2746) of fetuses carried pCNVs; 6.1% and 7.5% in isolated and non-isolated CAKUT, respectively. SNV/Indel analysis provided at least 16.5% (63/381) additional diagnostic yield beyond CNV analysis; 12.8% and 23.8% in isolated and non-isolated CAKUT, respectively.
Conclusion: pCNVs comprise a significant proportion of genetic diagnostic findings in prenatal CAKUT, most commonly detected in fetuses with isolated HEK, MCDK, renal agenesis, and non-isolated CAKUT. Monogenic causes should be considered when karyotyping and CMA are nondiagnostic.
期刊介绍:
Prenatal Diagnosis welcomes submissions in all aspects of prenatal diagnosis with a particular focus on areas in which molecular biology and genetics interface with prenatal care and therapy, encompassing: all aspects of fetal imaging, including sonography and magnetic resonance imaging; prenatal cytogenetics, including molecular studies and array CGH; prenatal screening studies; fetal cells and cell-free nucleic acids in maternal blood and other fluids; preimplantation genetic diagnosis (PGD); prenatal diagnosis of single gene disorders, including metabolic disorders; fetal therapy; fetal and placental development and pathology; development and evaluation of laboratory services for prenatal diagnosis; psychosocial, legal, ethical and economic aspects of prenatal diagnosis; prenatal genetic counseling