{"title":"籼稻和粳稻对氮素缺乏和补偿反应的根系生理和土壤微生物机制。","authors":"Runnan Wang, Guoping Tang, Yanyao Lu, Dingshun Zhang, Shuo Cai, Haohua He, Hongcheng Zhang, Qiangqiang Xiong","doi":"10.1111/ppl.14549","DOIUrl":null,"url":null,"abstract":"<p><p>Compensatory effects are common biological phenomena in nature. In this study, we investigated the changes in root nitrogen uptake, root morphological and physiological responses, and changes in the rhizosphere soil microbial communities of indica and japonica rice during a nitrogen deficiency-sensitive period and an effective compensation period with double the nitrogen supply. We conducted a bucket experiment using Suxiu 867 (a japonica rice variety) and Yangxian You 918 (an indica rice variety). Treatments included CK (constant distribution of nitrogen fertilizer at each growth stage, represented by CK867 and CK918) and NDC (nitrogen deficiency in the tillering stage, double nitrogen application in the ear differentiation stage to compensate, represented by NDC867 and NDC918) variations. Both varieties presented the highest δ<sup>15</sup>N and <sup>15</sup>N abundances and Ndff (refers to the proportion of nitrogen in a plant's body that comes directly from the fertilizer applied.) in rice under the NDC treatment. Metagenomic sequencing of rhizospheric soil showed that the dominant bacterial groups at the phylum level among each treatment were Actinobacteria, Proteobacteria, Chloroflexi, Acidobacteria, Gemmatimonadetes, and Nitrospirae. The rhizosphere of indica rice was more enriched with the microbial communities involved in nitrogen metabolism, which contributed to higher nitrogen utilization efficiency. A correlation-based network was constructed and provides insights into the formation of nitrogen deficiency compensation effects and contributes to the enhancement of nitrogen uptake and utilization efficiency in rice production.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 5","pages":"e14549"},"PeriodicalIF":5.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Root physiological and soil microbial mechanisms underlying responses to nitrogen deficiency and compensation in Indica and Japonica rice.\",\"authors\":\"Runnan Wang, Guoping Tang, Yanyao Lu, Dingshun Zhang, Shuo Cai, Haohua He, Hongcheng Zhang, Qiangqiang Xiong\",\"doi\":\"10.1111/ppl.14549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Compensatory effects are common biological phenomena in nature. In this study, we investigated the changes in root nitrogen uptake, root morphological and physiological responses, and changes in the rhizosphere soil microbial communities of indica and japonica rice during a nitrogen deficiency-sensitive period and an effective compensation period with double the nitrogen supply. We conducted a bucket experiment using Suxiu 867 (a japonica rice variety) and Yangxian You 918 (an indica rice variety). Treatments included CK (constant distribution of nitrogen fertilizer at each growth stage, represented by CK867 and CK918) and NDC (nitrogen deficiency in the tillering stage, double nitrogen application in the ear differentiation stage to compensate, represented by NDC867 and NDC918) variations. Both varieties presented the highest δ<sup>15</sup>N and <sup>15</sup>N abundances and Ndff (refers to the proportion of nitrogen in a plant's body that comes directly from the fertilizer applied.) in rice under the NDC treatment. Metagenomic sequencing of rhizospheric soil showed that the dominant bacterial groups at the phylum level among each treatment were Actinobacteria, Proteobacteria, Chloroflexi, Acidobacteria, Gemmatimonadetes, and Nitrospirae. The rhizosphere of indica rice was more enriched with the microbial communities involved in nitrogen metabolism, which contributed to higher nitrogen utilization efficiency. A correlation-based network was constructed and provides insights into the formation of nitrogen deficiency compensation effects and contributes to the enhancement of nitrogen uptake and utilization efficiency in rice production.</p>\",\"PeriodicalId\":20164,\"journal\":{\"name\":\"Physiologia plantarum\",\"volume\":\"176 5\",\"pages\":\"e14549\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiologia plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/ppl.14549\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.14549","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Root physiological and soil microbial mechanisms underlying responses to nitrogen deficiency and compensation in Indica and Japonica rice.
Compensatory effects are common biological phenomena in nature. In this study, we investigated the changes in root nitrogen uptake, root morphological and physiological responses, and changes in the rhizosphere soil microbial communities of indica and japonica rice during a nitrogen deficiency-sensitive period and an effective compensation period with double the nitrogen supply. We conducted a bucket experiment using Suxiu 867 (a japonica rice variety) and Yangxian You 918 (an indica rice variety). Treatments included CK (constant distribution of nitrogen fertilizer at each growth stage, represented by CK867 and CK918) and NDC (nitrogen deficiency in the tillering stage, double nitrogen application in the ear differentiation stage to compensate, represented by NDC867 and NDC918) variations. Both varieties presented the highest δ15N and 15N abundances and Ndff (refers to the proportion of nitrogen in a plant's body that comes directly from the fertilizer applied.) in rice under the NDC treatment. Metagenomic sequencing of rhizospheric soil showed that the dominant bacterial groups at the phylum level among each treatment were Actinobacteria, Proteobacteria, Chloroflexi, Acidobacteria, Gemmatimonadetes, and Nitrospirae. The rhizosphere of indica rice was more enriched with the microbial communities involved in nitrogen metabolism, which contributed to higher nitrogen utilization efficiency. A correlation-based network was constructed and provides insights into the formation of nitrogen deficiency compensation effects and contributes to the enhancement of nitrogen uptake and utilization efficiency in rice production.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.