Verónica Rodríguez-Sánchez, Daniel Tapia-Maruri, Judith Márquez-Guzmán, Sonia Vázquez-Santana, Rocío Cruz-Ortega
{"title":"子叶在 Fagopyrum esculentum Moench(蓼科)幼苗耐铝积累中的作用。","authors":"Verónica Rodríguez-Sánchez, Daniel Tapia-Maruri, Judith Márquez-Guzmán, Sonia Vázquez-Santana, Rocío Cruz-Ortega","doi":"10.1111/ppl.14554","DOIUrl":null,"url":null,"abstract":"<p><p>Acidic soils have increased due to agricultural practices, climate factors, and the excessive use of nitrogen fertilizers to meet food demand. In these soils, aluminium (Al) is soluble and can be taken up by roots, but it is toxic to most plant species. Fagopyrum esculentum is able to adapt to acidic toxic aluminium conditions. Anatomical studies identifying novel potential cellular structures as sites of Al accumulation are currently lacking. This study provides an anatomical description of the cotyledons, revealing the presence of papillae and glandular trichomes at their margins. In seedlings treated with 100 μM Al, energy-dispersive x-ray spectroscopy (ESEM-EDS) analysis of the cotyledons revealed that the margin has the highest concentration of Al. The margin containing the epidermal papillae was subjected to laser microdissection, and Al was quantified using mass spectrometry with an inductively coupled plasma source ICP-MS and compared with the Al in the remaining leaf blades. The concentration of Al in the microdissected papillae was 3,460 mg Al kg<sup>-1</sup> Dry Weight (DW), whereas the blades contained only 1,390 mg Al kg<sup>-1</sup> DW. Moreover, histochemical tests for Al and total phenols in the epidermal papillae revealed that Al may be bound to phenolic compounds. Thus, this study demonstrated that the cotyledons of F. esculentum have epidermal papillae that can accumulate Al.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 5","pages":"e14554"},"PeriodicalIF":5.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of cotyledons in aluminium accumulation as a tolerance strategy in Fagopyrum esculentum Moench (Polygonaceae) seedlings.\",\"authors\":\"Verónica Rodríguez-Sánchez, Daniel Tapia-Maruri, Judith Márquez-Guzmán, Sonia Vázquez-Santana, Rocío Cruz-Ortega\",\"doi\":\"10.1111/ppl.14554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acidic soils have increased due to agricultural practices, climate factors, and the excessive use of nitrogen fertilizers to meet food demand. In these soils, aluminium (Al) is soluble and can be taken up by roots, but it is toxic to most plant species. Fagopyrum esculentum is able to adapt to acidic toxic aluminium conditions. Anatomical studies identifying novel potential cellular structures as sites of Al accumulation are currently lacking. This study provides an anatomical description of the cotyledons, revealing the presence of papillae and glandular trichomes at their margins. In seedlings treated with 100 μM Al, energy-dispersive x-ray spectroscopy (ESEM-EDS) analysis of the cotyledons revealed that the margin has the highest concentration of Al. The margin containing the epidermal papillae was subjected to laser microdissection, and Al was quantified using mass spectrometry with an inductively coupled plasma source ICP-MS and compared with the Al in the remaining leaf blades. The concentration of Al in the microdissected papillae was 3,460 mg Al kg<sup>-1</sup> Dry Weight (DW), whereas the blades contained only 1,390 mg Al kg<sup>-1</sup> DW. Moreover, histochemical tests for Al and total phenols in the epidermal papillae revealed that Al may be bound to phenolic compounds. Thus, this study demonstrated that the cotyledons of F. esculentum have epidermal papillae that can accumulate Al.</p>\",\"PeriodicalId\":20164,\"journal\":{\"name\":\"Physiologia plantarum\",\"volume\":\"176 5\",\"pages\":\"e14554\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiologia plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/ppl.14554\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.14554","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
由于农业耕作方式、气候因素以及为满足粮食需求而过量使用氮肥,酸性土壤日益增多。在这些土壤中,铝(Al)是可溶的,可被根系吸收,但对大多数植物物种有毒。Fagopyrum esculentum 能够适应酸性毒铝条件。目前还缺乏解剖学研究来确定新的潜在细胞结构作为铝积累的部位。本研究对子叶进行了解剖学描述,揭示了子叶边缘乳突和腺毛的存在。在用 100 μM Al 处理的幼苗中,子叶的能量色散 X 射线光谱(ESEM-EDS)分析表明,边缘的 Al 浓度最高。对含有表皮乳头的边缘进行了激光显微切割,并使用电感耦合等离子体质谱 ICP-MS 对铝进行了定量,并与其余叶片中的铝进行了比较。经显微切割的乳头中的铝含量为 3,460 毫克 Al kg-1 干重(DW),而叶片中的铝含量仅为 1,390 毫克 Al kg-1 干重。此外,对表皮乳头中的铝和总酚进行的组织化学测试表明,铝可能与酚类化合物结合在一起。因此,这项研究表明,F. esculentum 子叶的表皮乳头可以积累铝。
Role of cotyledons in aluminium accumulation as a tolerance strategy in Fagopyrum esculentum Moench (Polygonaceae) seedlings.
Acidic soils have increased due to agricultural practices, climate factors, and the excessive use of nitrogen fertilizers to meet food demand. In these soils, aluminium (Al) is soluble and can be taken up by roots, but it is toxic to most plant species. Fagopyrum esculentum is able to adapt to acidic toxic aluminium conditions. Anatomical studies identifying novel potential cellular structures as sites of Al accumulation are currently lacking. This study provides an anatomical description of the cotyledons, revealing the presence of papillae and glandular trichomes at their margins. In seedlings treated with 100 μM Al, energy-dispersive x-ray spectroscopy (ESEM-EDS) analysis of the cotyledons revealed that the margin has the highest concentration of Al. The margin containing the epidermal papillae was subjected to laser microdissection, and Al was quantified using mass spectrometry with an inductively coupled plasma source ICP-MS and compared with the Al in the remaining leaf blades. The concentration of Al in the microdissected papillae was 3,460 mg Al kg-1 Dry Weight (DW), whereas the blades contained only 1,390 mg Al kg-1 DW. Moreover, histochemical tests for Al and total phenols in the epidermal papillae revealed that Al may be bound to phenolic compounds. Thus, this study demonstrated that the cotyledons of F. esculentum have epidermal papillae that can accumulate Al.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.