{"title":"水杨甙通过GSK3β抑制小胶质细胞的活化,从而改善低压氧小鼠血脑屏障的完整性和认知功能。","authors":"Xianxie Zhang, Huiting Zhang, Zuoxu Liu, Tianke Huang, Ru Yi, Zengchun Ma, Yue Gao","doi":"10.1002/ptr.8264","DOIUrl":null,"url":null,"abstract":"<p><p>Salidroside, an active component found in Rhodiola rosea L., has emerged as a potential therapeutic agent for the prevention and treatment of hypoxic brain injury, while the precise target and mechanism of salidroside were remain unclear. The study utilized techniques such as network pharmacology, transcriptome sequencing to investigate the mechanism and target of salidroside in regulating blood-brain barrier (BBB) function to protect hypoxic brain injury in vivo. Utilized macromolecular docking and molecular biology techniques to explore the molecular mechanism of salidroside in alleviating brain injury induced by hypoxia in BV2 cell model. The results show that salidroside alleviated the learning and memory dysfunction and pathological injury in mice exposed to hypobaric hypoxia, reduced brain water content and attenuate the inflammatory response and oxidative stress, effectively reversed S100β in serum and promoted the repair of BBB. GSK3β is an important therapeutic target of salidroside in the treatment of hypoxic cognitive impairment, and salidroside can specifically bind GSK3β in the ATP binding pocket, inducing the phosphorylation of GSK3β, targeting downstream Nrf-2 to regulate microglia activity, promoting the accumulation of β-catenin, thereby inhibiting microglial activation, improving the BBB integrity injury and achieving a neuroprotective effect. This study demonstrates that salidroside can inhibit the activation of microglia by inducing GSK3β phosphorylation, achieve neuroprotective effects and alleviate learning and memory dysfunction in hypobaric hypoxia mice. This study provides a theoretical basis for the development of salidroside and the clinical application of Rhodiola rosea L.</p>","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Salidroside improves blood-brain barrier integrity and cognitive function in hypobaric hypoxia mice by inhibiting microglia activation through GSK3β.\",\"authors\":\"Xianxie Zhang, Huiting Zhang, Zuoxu Liu, Tianke Huang, Ru Yi, Zengchun Ma, Yue Gao\",\"doi\":\"10.1002/ptr.8264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Salidroside, an active component found in Rhodiola rosea L., has emerged as a potential therapeutic agent for the prevention and treatment of hypoxic brain injury, while the precise target and mechanism of salidroside were remain unclear. The study utilized techniques such as network pharmacology, transcriptome sequencing to investigate the mechanism and target of salidroside in regulating blood-brain barrier (BBB) function to protect hypoxic brain injury in vivo. Utilized macromolecular docking and molecular biology techniques to explore the molecular mechanism of salidroside in alleviating brain injury induced by hypoxia in BV2 cell model. The results show that salidroside alleviated the learning and memory dysfunction and pathological injury in mice exposed to hypobaric hypoxia, reduced brain water content and attenuate the inflammatory response and oxidative stress, effectively reversed S100β in serum and promoted the repair of BBB. GSK3β is an important therapeutic target of salidroside in the treatment of hypoxic cognitive impairment, and salidroside can specifically bind GSK3β in the ATP binding pocket, inducing the phosphorylation of GSK3β, targeting downstream Nrf-2 to regulate microglia activity, promoting the accumulation of β-catenin, thereby inhibiting microglial activation, improving the BBB integrity injury and achieving a neuroprotective effect. This study demonstrates that salidroside can inhibit the activation of microglia by inducing GSK3β phosphorylation, achieve neuroprotective effects and alleviate learning and memory dysfunction in hypobaric hypoxia mice. This study provides a theoretical basis for the development of salidroside and the clinical application of Rhodiola rosea L.</p>\",\"PeriodicalId\":20110,\"journal\":{\"name\":\"Phytotherapy Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytotherapy Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/ptr.8264\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytotherapy Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ptr.8264","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Salidroside improves blood-brain barrier integrity and cognitive function in hypobaric hypoxia mice by inhibiting microglia activation through GSK3β.
Salidroside, an active component found in Rhodiola rosea L., has emerged as a potential therapeutic agent for the prevention and treatment of hypoxic brain injury, while the precise target and mechanism of salidroside were remain unclear. The study utilized techniques such as network pharmacology, transcriptome sequencing to investigate the mechanism and target of salidroside in regulating blood-brain barrier (BBB) function to protect hypoxic brain injury in vivo. Utilized macromolecular docking and molecular biology techniques to explore the molecular mechanism of salidroside in alleviating brain injury induced by hypoxia in BV2 cell model. The results show that salidroside alleviated the learning and memory dysfunction and pathological injury in mice exposed to hypobaric hypoxia, reduced brain water content and attenuate the inflammatory response and oxidative stress, effectively reversed S100β in serum and promoted the repair of BBB. GSK3β is an important therapeutic target of salidroside in the treatment of hypoxic cognitive impairment, and salidroside can specifically bind GSK3β in the ATP binding pocket, inducing the phosphorylation of GSK3β, targeting downstream Nrf-2 to regulate microglia activity, promoting the accumulation of β-catenin, thereby inhibiting microglial activation, improving the BBB integrity injury and achieving a neuroprotective effect. This study demonstrates that salidroside can inhibit the activation of microglia by inducing GSK3β phosphorylation, achieve neuroprotective effects and alleviate learning and memory dysfunction in hypobaric hypoxia mice. This study provides a theoretical basis for the development of salidroside and the clinical application of Rhodiola rosea L.
期刊介绍:
Phytotherapy Research is an internationally recognized pharmacological journal that serves as a trailblazing resource for biochemists, pharmacologists, and toxicologists. We strive to disseminate groundbreaking research on medicinal plants, pushing the boundaries of knowledge and understanding in this field.
Our primary focus areas encompass pharmacology, toxicology, and the clinical applications of herbs and natural products in medicine. We actively encourage submissions on the effects of commonly consumed food ingredients and standardized plant extracts. We welcome a range of contributions including original research papers, review articles, and letters.
By providing a platform for the latest developments and discoveries in phytotherapy, we aim to support the advancement of scientific knowledge and contribute to the improvement of modern medicine.