{"title":"从宫内神经超声图像对胎儿生长受限进行基于纹理的分类","authors":"Zehao Chen, Mengjie Chen, Shiying Huang, Zhongming Wang, Yiheng Zhang, Yuhan Huang, Weiling Li, Xiaowei Huang","doi":"10.1002/jum.16594","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Fetal growth restriction (FGR) is a condition where fetuses fail to reach their genetic potential for growth, posing a significant health challenge for newborns. The aim of this research was to explore the efficacy of texture-based analysis of neurosonographic images in identifying FGR in fetuses, which may provide a promising tool for early assessment of FGR.</p><p><strong>Methods: </strong>A retrospective analysis collected 100 intrauterine neurosonographic images from 50 FGR and 50 gestational age-appropriate fetuses. Using MaZda software, approximately 300 texture features were extracted from occipital white matter (OWM) and cerebellum of intrauterine neurosonographic images, respectively. Then 10 optimal features were separately selected by 3 algorithms, including the Fisher coefficient method, the method of minimizing classification error probability and average correlation coefficients, and the mutual information coefficient method. Further, the 10 statistically most significant features were selected from these sets to form the mixed feature set. After nonlinear discriminant analysis was performed to reduce feature dimensionality, the artificial neural network (ANN) classifier was conducted, respectively.</p><p><strong>Results: </strong>For OWM and cerebellum, a total of 11 and 14 statistically significant features were selected. When the mixed feature sets of OWM and cerebellum were applied to ANN classifier, classification accuracy were 90.00% (κ = 0.800; P < .001) and 93.00% (κ = 0.860; P < .001), and the receiver operating characteristic curve for identifying FGR showed an area under the curve of 0.82 and 0.87.</p><p><strong>Conclusions: </strong>Texture analysis of fetal intrauterine neurosonographic images is a feasible and noninvasive strategy for evaluating FGR fetuses.</p>","PeriodicalId":17563,"journal":{"name":"Journal of Ultrasound in Medicine","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Texture-Based Classification of Fetal Growth Restriction From Intrauterine Neurosonographic Image.\",\"authors\":\"Zehao Chen, Mengjie Chen, Shiying Huang, Zhongming Wang, Yiheng Zhang, Yuhan Huang, Weiling Li, Xiaowei Huang\",\"doi\":\"10.1002/jum.16594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Fetal growth restriction (FGR) is a condition where fetuses fail to reach their genetic potential for growth, posing a significant health challenge for newborns. The aim of this research was to explore the efficacy of texture-based analysis of neurosonographic images in identifying FGR in fetuses, which may provide a promising tool for early assessment of FGR.</p><p><strong>Methods: </strong>A retrospective analysis collected 100 intrauterine neurosonographic images from 50 FGR and 50 gestational age-appropriate fetuses. Using MaZda software, approximately 300 texture features were extracted from occipital white matter (OWM) and cerebellum of intrauterine neurosonographic images, respectively. Then 10 optimal features were separately selected by 3 algorithms, including the Fisher coefficient method, the method of minimizing classification error probability and average correlation coefficients, and the mutual information coefficient method. Further, the 10 statistically most significant features were selected from these sets to form the mixed feature set. After nonlinear discriminant analysis was performed to reduce feature dimensionality, the artificial neural network (ANN) classifier was conducted, respectively.</p><p><strong>Results: </strong>For OWM and cerebellum, a total of 11 and 14 statistically significant features were selected. When the mixed feature sets of OWM and cerebellum were applied to ANN classifier, classification accuracy were 90.00% (κ = 0.800; P < .001) and 93.00% (κ = 0.860; P < .001), and the receiver operating characteristic curve for identifying FGR showed an area under the curve of 0.82 and 0.87.</p><p><strong>Conclusions: </strong>Texture analysis of fetal intrauterine neurosonographic images is a feasible and noninvasive strategy for evaluating FGR fetuses.</p>\",\"PeriodicalId\":17563,\"journal\":{\"name\":\"Journal of Ultrasound in Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ultrasound in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/jum.16594\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ultrasound in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jum.16594","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
Texture-Based Classification of Fetal Growth Restriction From Intrauterine Neurosonographic Image.
Objective: Fetal growth restriction (FGR) is a condition where fetuses fail to reach their genetic potential for growth, posing a significant health challenge for newborns. The aim of this research was to explore the efficacy of texture-based analysis of neurosonographic images in identifying FGR in fetuses, which may provide a promising tool for early assessment of FGR.
Methods: A retrospective analysis collected 100 intrauterine neurosonographic images from 50 FGR and 50 gestational age-appropriate fetuses. Using MaZda software, approximately 300 texture features were extracted from occipital white matter (OWM) and cerebellum of intrauterine neurosonographic images, respectively. Then 10 optimal features were separately selected by 3 algorithms, including the Fisher coefficient method, the method of minimizing classification error probability and average correlation coefficients, and the mutual information coefficient method. Further, the 10 statistically most significant features were selected from these sets to form the mixed feature set. After nonlinear discriminant analysis was performed to reduce feature dimensionality, the artificial neural network (ANN) classifier was conducted, respectively.
Results: For OWM and cerebellum, a total of 11 and 14 statistically significant features were selected. When the mixed feature sets of OWM and cerebellum were applied to ANN classifier, classification accuracy were 90.00% (κ = 0.800; P < .001) and 93.00% (κ = 0.860; P < .001), and the receiver operating characteristic curve for identifying FGR showed an area under the curve of 0.82 and 0.87.
Conclusions: Texture analysis of fetal intrauterine neurosonographic images is a feasible and noninvasive strategy for evaluating FGR fetuses.
期刊介绍:
The Journal of Ultrasound in Medicine (JUM) is dedicated to the rapid, accurate publication of original articles dealing with all aspects of medical ultrasound, particularly its direct application to patient care but also relevant basic science, advances in instrumentation, and biological effects. The journal is an official publication of the American Institute of Ultrasound in Medicine and publishes articles in a variety of categories, including Original Research papers, Review Articles, Pictorial Essays, Technical Innovations, Case Series, Letters to the Editor, and more, from an international bevy of countries in a continual effort to showcase and promote advances in the ultrasound community.
Represented through these efforts are a wide variety of disciplines of ultrasound, including, but not limited to:
-Basic Science-
Breast Ultrasound-
Contrast-Enhanced Ultrasound-
Dermatology-
Echocardiography-
Elastography-
Emergency Medicine-
Fetal Echocardiography-
Gastrointestinal Ultrasound-
General and Abdominal Ultrasound-
Genitourinary Ultrasound-
Gynecologic Ultrasound-
Head and Neck Ultrasound-
High Frequency Clinical and Preclinical Imaging-
Interventional-Intraoperative Ultrasound-
Musculoskeletal Ultrasound-
Neurosonology-
Obstetric Ultrasound-
Ophthalmologic Ultrasound-
Pediatric Ultrasound-
Point-of-Care Ultrasound-
Public Policy-
Superficial Structures-
Therapeutic Ultrasound-
Ultrasound Education-
Ultrasound in Global Health-
Urologic Ultrasound-
Vascular Ultrasound