Ju-Hui Seo, Woo Keyoung Kim, Kyu-Won Kang, Seoyun Lee, Byung-Jae Kang
{"title":"多脱氧核苷酸和脂肪组织间充质干细胞在犬骨关节炎细胞模型中的抗炎作用。","authors":"Ju-Hui Seo, Woo Keyoung Kim, Kyu-Won Kang, Seoyun Lee, Byung-Jae Kang","doi":"10.4142/jvs.24147","DOIUrl":null,"url":null,"abstract":"<p><strong>Importance: </strong>A relatively new therapeutic agent for osteoarthritis (OA), polydeoxyribonucleotide (PDRN), shows potential in treating human OA due to its regenerative and anti-inflammatory effects. However, studies on PDRN for canine OA are limited, and no study has investigated their use with mesenchymal stem cells (MSCs) conventionally used for OA treatment.</p><p><strong>Objective: </strong>This study aimed to evaluate the potential of PDRN and explore its combined effect with adipose tissue-derived MSCs (AdMSCs) in treating canine OA.</p><p><strong>Methods: </strong>To study the impact of PDRN, canine chondrocytes, synoviocytes, and AdMSCs were exposed to various PDRN concentrations, and viability was assessed using cell counting kit-8. The OA model was created by treating chondrocytes and synoviocytes with lipopolysaccharide, followed by treatment under three different conditions: PDRN alone, AdMSCs alone, and a combination of PDRN and AdMSCs. Using real-time quantitative polymerase chain reaction, the anti-inflammatory effects and mechanisms were investigated by quantitatively assessing pro-inflammatory cytokines, collagen degradation markers, adenosine A2a receptor (ADORA2A), and nuclear factor-kappa B.</p><p><strong>Results: </strong>PDRN alone and combined with AdMSCs significantly reduced the expression of pro-inflammatory cytokines and collagen degradation markers in an OA model. PDRN promoted AdMSC proliferation and upregulated ADORA2A expression. AdMSCs exhibited comprehensive anti-inflammatory effects through paracrine effects, and both substances reduced inflammatory gene expression through different mechanisms, potentially enhancing therapeutic effects.</p><p><strong>Conclusions and relevance: </strong>The results indicate that PDRN is a safe and effective anti-inflammatory material that can be used independently or as an adjuvant for AdMSCs. Although additional research is necessary, this study is significant because it provides a foundation for future research at the cellular level.</p>","PeriodicalId":17557,"journal":{"name":"Journal of Veterinary Science","volume":"25 5","pages":"e68"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450397/pdf/","citationCount":"0","resultStr":"{\"title\":\"Anti-inflammatory effects of polydeoxyribonucleotide and adipose tissue-derived mesenchymal stem cells in a canine cell model of osteoarthritis.\",\"authors\":\"Ju-Hui Seo, Woo Keyoung Kim, Kyu-Won Kang, Seoyun Lee, Byung-Jae Kang\",\"doi\":\"10.4142/jvs.24147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Importance: </strong>A relatively new therapeutic agent for osteoarthritis (OA), polydeoxyribonucleotide (PDRN), shows potential in treating human OA due to its regenerative and anti-inflammatory effects. However, studies on PDRN for canine OA are limited, and no study has investigated their use with mesenchymal stem cells (MSCs) conventionally used for OA treatment.</p><p><strong>Objective: </strong>This study aimed to evaluate the potential of PDRN and explore its combined effect with adipose tissue-derived MSCs (AdMSCs) in treating canine OA.</p><p><strong>Methods: </strong>To study the impact of PDRN, canine chondrocytes, synoviocytes, and AdMSCs were exposed to various PDRN concentrations, and viability was assessed using cell counting kit-8. The OA model was created by treating chondrocytes and synoviocytes with lipopolysaccharide, followed by treatment under three different conditions: PDRN alone, AdMSCs alone, and a combination of PDRN and AdMSCs. Using real-time quantitative polymerase chain reaction, the anti-inflammatory effects and mechanisms were investigated by quantitatively assessing pro-inflammatory cytokines, collagen degradation markers, adenosine A2a receptor (ADORA2A), and nuclear factor-kappa B.</p><p><strong>Results: </strong>PDRN alone and combined with AdMSCs significantly reduced the expression of pro-inflammatory cytokines and collagen degradation markers in an OA model. PDRN promoted AdMSC proliferation and upregulated ADORA2A expression. AdMSCs exhibited comprehensive anti-inflammatory effects through paracrine effects, and both substances reduced inflammatory gene expression through different mechanisms, potentially enhancing therapeutic effects.</p><p><strong>Conclusions and relevance: </strong>The results indicate that PDRN is a safe and effective anti-inflammatory material that can be used independently or as an adjuvant for AdMSCs. Although additional research is necessary, this study is significant because it provides a foundation for future research at the cellular level.</p>\",\"PeriodicalId\":17557,\"journal\":{\"name\":\"Journal of Veterinary Science\",\"volume\":\"25 5\",\"pages\":\"e68\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450397/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Veterinary Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.4142/jvs.24147\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Veterinary Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.4142/jvs.24147","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
Anti-inflammatory effects of polydeoxyribonucleotide and adipose tissue-derived mesenchymal stem cells in a canine cell model of osteoarthritis.
Importance: A relatively new therapeutic agent for osteoarthritis (OA), polydeoxyribonucleotide (PDRN), shows potential in treating human OA due to its regenerative and anti-inflammatory effects. However, studies on PDRN for canine OA are limited, and no study has investigated their use with mesenchymal stem cells (MSCs) conventionally used for OA treatment.
Objective: This study aimed to evaluate the potential of PDRN and explore its combined effect with adipose tissue-derived MSCs (AdMSCs) in treating canine OA.
Methods: To study the impact of PDRN, canine chondrocytes, synoviocytes, and AdMSCs were exposed to various PDRN concentrations, and viability was assessed using cell counting kit-8. The OA model was created by treating chondrocytes and synoviocytes with lipopolysaccharide, followed by treatment under three different conditions: PDRN alone, AdMSCs alone, and a combination of PDRN and AdMSCs. Using real-time quantitative polymerase chain reaction, the anti-inflammatory effects and mechanisms were investigated by quantitatively assessing pro-inflammatory cytokines, collagen degradation markers, adenosine A2a receptor (ADORA2A), and nuclear factor-kappa B.
Results: PDRN alone and combined with AdMSCs significantly reduced the expression of pro-inflammatory cytokines and collagen degradation markers in an OA model. PDRN promoted AdMSC proliferation and upregulated ADORA2A expression. AdMSCs exhibited comprehensive anti-inflammatory effects through paracrine effects, and both substances reduced inflammatory gene expression through different mechanisms, potentially enhancing therapeutic effects.
Conclusions and relevance: The results indicate that PDRN is a safe and effective anti-inflammatory material that can be used independently or as an adjuvant for AdMSCs. Although additional research is necessary, this study is significant because it provides a foundation for future research at the cellular level.
期刊介绍:
The Journal of Veterinary Science (J Vet Sci) is devoted to the advancement and dissemination of scientific knowledge concerning veterinary sciences and related academic disciplines. It is an international journal indexed in the Thomson Scientific Web of Science, SCI-EXPANDED, Sci Search, BIOSIS Previews, Biological Abstracts, Focus on: Veterinary Science & Medicine, Zoological Record, PubMed /MEDLINE, Index Medicus, Pubmed Central, CAB Abstracts / Index Veterinarius, EBSCO, AGRIS and AGRICOLA. This journal published in English by the Korean Society of Veterinary Science (KSVS) being distributed worldwide.