Brayden D Halvorson, Aaron D Ward, Donna Murrell, James C Lacefield, Robert W Wiseman, Daniel Goldman, Jefferson C Frisbee
{"title":"骨骼肌阻力动脉张力的调节:血管反应的时空变异性。","authors":"Brayden D Halvorson, Aaron D Ward, Donna Murrell, James C Lacefield, Robert W Wiseman, Daniel Goldman, Jefferson C Frisbee","doi":"10.1159/000541169","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>A full understanding of the integration of the mechanisms of vascular tone regulation requires an interrogation of the temporal behavior of arterioles across vasoactive challenges. Building on previous work, the purpose of the present study was to start to interrogate the temporal nature of arteriolar tone regulation with physiological stimuli.</p><p><strong>Methods: </strong>We determined the response rate of ex vivo proximal and in situ distal resistance arterioles when challenged by one-, two-, and three-parameter combinations of five major physiological stimuli (norepinephrine, intravascular pressure, oxygen, adenosine [metabolism], and intralumenal flow). Predictive machine learning models determined which factors were most influential in controlling the rate of arteriolar responses.</p><p><strong>Results: </strong>Results indicate that vascular response rate is dependent on the intensity of the stimulus used and can be severely hindered by altered environments, caused by application of secondary or tertiary stimuli. Advanced analytics suggest that adrenergic influences were dominant in predicting proximal arteriolar response rate compared to metabolic influences in distal arterioles.</p><p><strong>Conclusion: </strong>These data suggest that the vascular response rate to physiologic stimuli can be strongly influenced by the local environment. Translating how these effects impact vascular networks is imperative for understanding how the microcirculation appropriately perfuses tissue across conditions.</p>","PeriodicalId":17530,"journal":{"name":"Journal of Vascular Research","volume":" ","pages":"269-297"},"PeriodicalIF":1.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11652243/pdf/","citationCount":"0","resultStr":"{\"title\":\"Regulation of Skeletal Muscle Resistance Arteriolar Tone: Temporal Variability in Vascular Responses.\",\"authors\":\"Brayden D Halvorson, Aaron D Ward, Donna Murrell, James C Lacefield, Robert W Wiseman, Daniel Goldman, Jefferson C Frisbee\",\"doi\":\"10.1159/000541169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>A full understanding of the integration of the mechanisms of vascular tone regulation requires an interrogation of the temporal behavior of arterioles across vasoactive challenges. Building on previous work, the purpose of the present study was to start to interrogate the temporal nature of arteriolar tone regulation with physiological stimuli.</p><p><strong>Methods: </strong>We determined the response rate of ex vivo proximal and in situ distal resistance arterioles when challenged by one-, two-, and three-parameter combinations of five major physiological stimuli (norepinephrine, intravascular pressure, oxygen, adenosine [metabolism], and intralumenal flow). Predictive machine learning models determined which factors were most influential in controlling the rate of arteriolar responses.</p><p><strong>Results: </strong>Results indicate that vascular response rate is dependent on the intensity of the stimulus used and can be severely hindered by altered environments, caused by application of secondary or tertiary stimuli. Advanced analytics suggest that adrenergic influences were dominant in predicting proximal arteriolar response rate compared to metabolic influences in distal arterioles.</p><p><strong>Conclusion: </strong>These data suggest that the vascular response rate to physiologic stimuli can be strongly influenced by the local environment. Translating how these effects impact vascular networks is imperative for understanding how the microcirculation appropriately perfuses tissue across conditions.</p>\",\"PeriodicalId\":17530,\"journal\":{\"name\":\"Journal of Vascular Research\",\"volume\":\" \",\"pages\":\"269-297\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11652243/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vascular Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000541169\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PERIPHERAL VASCULAR DISEASE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vascular Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000541169","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
Regulation of Skeletal Muscle Resistance Arteriolar Tone: Temporal Variability in Vascular Responses.
Introduction: A full understanding of the integration of the mechanisms of vascular tone regulation requires an interrogation of the temporal behavior of arterioles across vasoactive challenges. Building on previous work, the purpose of the present study was to start to interrogate the temporal nature of arteriolar tone regulation with physiological stimuli.
Methods: We determined the response rate of ex vivo proximal and in situ distal resistance arterioles when challenged by one-, two-, and three-parameter combinations of five major physiological stimuli (norepinephrine, intravascular pressure, oxygen, adenosine [metabolism], and intralumenal flow). Predictive machine learning models determined which factors were most influential in controlling the rate of arteriolar responses.
Results: Results indicate that vascular response rate is dependent on the intensity of the stimulus used and can be severely hindered by altered environments, caused by application of secondary or tertiary stimuli. Advanced analytics suggest that adrenergic influences were dominant in predicting proximal arteriolar response rate compared to metabolic influences in distal arterioles.
Conclusion: These data suggest that the vascular response rate to physiologic stimuli can be strongly influenced by the local environment. Translating how these effects impact vascular networks is imperative for understanding how the microcirculation appropriately perfuses tissue across conditions.
期刊介绍:
The ''Journal of Vascular Research'' publishes original articles and reviews of scientific excellence in vascular and microvascular biology, physiology and pathophysiology. The scope of the journal covers a broad spectrum of vascular and lymphatic research, including vascular structure, vascular function, haemodynamics, mechanics, cell signalling, intercellular communication, growth and differentiation. JVR''s ''Vascular Update'' series regularly presents state-of-the-art reviews on hot topics in vascular biology. Manuscript processing times are, consistent with stringent review, kept as short as possible due to electronic submission. All articles are published online first, ensuring rapid publication. The ''Journal of Vascular Research'' is the official journal of the European Society for Microcirculation. A biennial prize is awarded to the authors of the best paper published in the journal over the previous two years, thus encouraging young scientists working in the exciting field of vascular biology to publish their findings.