Lea Böckstiegel, Theresa Schaumann, Björn Egert, Sabine E. Kulling, Christoph H. Weinert
{"title":"利用实验设计,开发一种通过固相微萃取箭头空间-气相色谱-质谱法分析洋葱挥发性成分的非目标方法。","authors":"Lea Böckstiegel, Theresa Schaumann, Björn Egert, Sabine E. Kulling, Christoph H. Weinert","doi":"10.1002/jssc.202400305","DOIUrl":null,"url":null,"abstract":"<p>The distinctive aroma of onions, consisting primarily of sulfur-containing compounds, is one of the reasons for the popularity of the vegetable. The rapid enzymatic and chemical reactions that occur after the destruction of onion bulb tissue render the analysis of the volatile profile challenging. Therefore, sample preparation is a crucial step in the analysis of the onion volatilome, but it often does not receive the necessary attention in the literature. In this work, we focused on two aspects: Firstly, we compared different sample preparation approaches to maximize the volatile yield and to enable the description of the onion volatile profile as it would emerge after a solid-phase microextraction (SPME) Arrow sampling procedure. For headspace (HS)-gas chromatography-mass spectrometry analysis, onion juice with the addition of an ammonium sulfate solution proved to be the best option. Secondly, we optimized the HS sampling and desorption parameters (enrichment time, enrichment temperature, agitator speed, desorption time) for onion volatiles using the efficient design of experiments (DoE) approach. The optimal conditions for the analysis with HS-SPME Arrow were an enrichment time of 75 min at 60°C with an agitator speed of 713 rpm and a desorption time of 120 s.</p>","PeriodicalId":17098,"journal":{"name":"Journal of separation science","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jssc.202400305","citationCount":"0","resultStr":"{\"title\":\"Development of an Untargeted Method for the Analysis of the Volatile Profile of Onions via Solid-Phase Microextraction Arrow-Headspace-Gas Chromatography-Mass Spectrometry Using Design of Experiments\",\"authors\":\"Lea Böckstiegel, Theresa Schaumann, Björn Egert, Sabine E. Kulling, Christoph H. Weinert\",\"doi\":\"10.1002/jssc.202400305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The distinctive aroma of onions, consisting primarily of sulfur-containing compounds, is one of the reasons for the popularity of the vegetable. The rapid enzymatic and chemical reactions that occur after the destruction of onion bulb tissue render the analysis of the volatile profile challenging. Therefore, sample preparation is a crucial step in the analysis of the onion volatilome, but it often does not receive the necessary attention in the literature. In this work, we focused on two aspects: Firstly, we compared different sample preparation approaches to maximize the volatile yield and to enable the description of the onion volatile profile as it would emerge after a solid-phase microextraction (SPME) Arrow sampling procedure. For headspace (HS)-gas chromatography-mass spectrometry analysis, onion juice with the addition of an ammonium sulfate solution proved to be the best option. Secondly, we optimized the HS sampling and desorption parameters (enrichment time, enrichment temperature, agitator speed, desorption time) for onion volatiles using the efficient design of experiments (DoE) approach. The optimal conditions for the analysis with HS-SPME Arrow were an enrichment time of 75 min at 60°C with an agitator speed of 713 rpm and a desorption time of 120 s.</p>\",\"PeriodicalId\":17098,\"journal\":{\"name\":\"Journal of separation science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jssc.202400305\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of separation science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jssc.202400305\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of separation science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jssc.202400305","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Development of an Untargeted Method for the Analysis of the Volatile Profile of Onions via Solid-Phase Microextraction Arrow-Headspace-Gas Chromatography-Mass Spectrometry Using Design of Experiments
The distinctive aroma of onions, consisting primarily of sulfur-containing compounds, is one of the reasons for the popularity of the vegetable. The rapid enzymatic and chemical reactions that occur after the destruction of onion bulb tissue render the analysis of the volatile profile challenging. Therefore, sample preparation is a crucial step in the analysis of the onion volatilome, but it often does not receive the necessary attention in the literature. In this work, we focused on two aspects: Firstly, we compared different sample preparation approaches to maximize the volatile yield and to enable the description of the onion volatile profile as it would emerge after a solid-phase microextraction (SPME) Arrow sampling procedure. For headspace (HS)-gas chromatography-mass spectrometry analysis, onion juice with the addition of an ammonium sulfate solution proved to be the best option. Secondly, we optimized the HS sampling and desorption parameters (enrichment time, enrichment temperature, agitator speed, desorption time) for onion volatiles using the efficient design of experiments (DoE) approach. The optimal conditions for the analysis with HS-SPME Arrow were an enrichment time of 75 min at 60°C with an agitator speed of 713 rpm and a desorption time of 120 s.
期刊介绍:
The Journal of Separation Science (JSS) is the most comprehensive source in separation science, since it covers all areas of chromatographic and electrophoretic separation methods in theory and practice, both in the analytical and in the preparative mode, solid phase extraction, sample preparation, and related techniques. Manuscripts on methodological or instrumental developments, including detection aspects, in particular mass spectrometry, as well as on innovative applications will also be published. Manuscripts on hyphenation, automation, and miniaturization are particularly welcome. Pre- and post-separation facets of a total analysis may be covered as well as the underlying logic of the development or application of a method.