{"title":"在单腿站立过程中使用边界时间法评估扁平足的姿势稳定性。","authors":"Paul S Sung, Dongchul Lee","doi":"10.1002/jor.25987","DOIUrl":null,"url":null,"abstract":"<p><p>Flatfoot, a foot deformity characterized by the collapse of the arch, significantly impacts an individual's balance and stability. This study explored postural adjustments and sway excursions in individuals with and without flatfoot using the Time-in-Boundary method. This method assessed relative stability by exploring various center of pressure radius thresholds during three trials of single-leg stance. We observed significant interactions in threshold levels (F = 4.37, p = 0.04) and normalized relative stable times (F = 7.64, p = 0.01), particularly in the initial trials. Initially, the flatfoot group showed marked decreases in stable times at 10 mm, 15 mm, and 20 mm thresholds, which expanded to 25 mm and 30 mm in subsequent trials. Despite a significant decrease in stability at the 30 mm threshold in early trials, participants exhibited improved stability control as trials progressed. This enhancement likely reflects a combination of a learning effect and an increased understanding of the task requirements, underscoring the adaptability of postural control systems to the biomechanical challenges posed by flatfoot. The Time-in-Boundary method has proven to be an effective tool for clinicians to assess postural control, playing a vital role in developing customized rehabilitation strategies for individuals with flatfoot.</p>","PeriodicalId":16650,"journal":{"name":"Journal of Orthopaedic Research®","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing postural stability in flatfoot using a time-in-boundary method during single-leg standing.\",\"authors\":\"Paul S Sung, Dongchul Lee\",\"doi\":\"10.1002/jor.25987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Flatfoot, a foot deformity characterized by the collapse of the arch, significantly impacts an individual's balance and stability. This study explored postural adjustments and sway excursions in individuals with and without flatfoot using the Time-in-Boundary method. This method assessed relative stability by exploring various center of pressure radius thresholds during three trials of single-leg stance. We observed significant interactions in threshold levels (F = 4.37, p = 0.04) and normalized relative stable times (F = 7.64, p = 0.01), particularly in the initial trials. Initially, the flatfoot group showed marked decreases in stable times at 10 mm, 15 mm, and 20 mm thresholds, which expanded to 25 mm and 30 mm in subsequent trials. Despite a significant decrease in stability at the 30 mm threshold in early trials, participants exhibited improved stability control as trials progressed. This enhancement likely reflects a combination of a learning effect and an increased understanding of the task requirements, underscoring the adaptability of postural control systems to the biomechanical challenges posed by flatfoot. The Time-in-Boundary method has proven to be an effective tool for clinicians to assess postural control, playing a vital role in developing customized rehabilitation strategies for individuals with flatfoot.</p>\",\"PeriodicalId\":16650,\"journal\":{\"name\":\"Journal of Orthopaedic Research®\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Orthopaedic Research®\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/jor.25987\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Orthopaedic Research®","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jor.25987","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
Assessing postural stability in flatfoot using a time-in-boundary method during single-leg standing.
Flatfoot, a foot deformity characterized by the collapse of the arch, significantly impacts an individual's balance and stability. This study explored postural adjustments and sway excursions in individuals with and without flatfoot using the Time-in-Boundary method. This method assessed relative stability by exploring various center of pressure radius thresholds during three trials of single-leg stance. We observed significant interactions in threshold levels (F = 4.37, p = 0.04) and normalized relative stable times (F = 7.64, p = 0.01), particularly in the initial trials. Initially, the flatfoot group showed marked decreases in stable times at 10 mm, 15 mm, and 20 mm thresholds, which expanded to 25 mm and 30 mm in subsequent trials. Despite a significant decrease in stability at the 30 mm threshold in early trials, participants exhibited improved stability control as trials progressed. This enhancement likely reflects a combination of a learning effect and an increased understanding of the task requirements, underscoring the adaptability of postural control systems to the biomechanical challenges posed by flatfoot. The Time-in-Boundary method has proven to be an effective tool for clinicians to assess postural control, playing a vital role in developing customized rehabilitation strategies for individuals with flatfoot.
期刊介绍:
The Journal of Orthopaedic Research is the forum for the rapid publication of high quality reports of new information on the full spectrum of orthopaedic research, including life sciences, engineering, translational, and clinical studies.