{"title":"LncRNA ZFAS1/miR-186-5p轴通过靶向BTG2参与氧化应激抑制心肌缺血再灌注损伤。","authors":"Yi Xiang, Shan Hui, Hao Nie, Chun Guo","doi":"10.1080/1744666X.2024.2411999","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To probe the involvement of long noncoding RNA zinc finger antisense 1 (ZFAS1)/microRNA (miR)-186-5p axis in inhibiting oxidative stress in myocardial ischemia-reperfusion injury (MIRI) by targeting B-cell translocation gene 2 (BTG2).</p><p><strong>Methods: </strong>The MIRI mice model was established by ligating the left anterior descending branch of the left coronary artery in C57BL/6 mice. The in vitro MIRI model was constructed by hypoxia and reoxygenation of HL-1 cardiomyocytes. Cardiomyocyte apoptosis and the extent of myocardial injury in mice were detected. The apoptosis rates, malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in HL-1 cells were assessed. The relationship among ZFAS1, miR-186-5p, and BTG2 was verified.</p><p><strong>Results: </strong>High ZFAS1 and BTG2 levels and low miR-186-5p levels were demonstrated in I/R-injured myocardial tissues and in H/R-treated cardiomyocytes. Interference with ZFAS1 or elevation of miR-186-5p inhibited apoptosis and oxidative stress in H/R model cardiomyocytes and I/R-injured myocardial tissues. Overexpressing BTG2 impaired the ameliorative effects of miR-186-5p on MIRI. ZFAS1 negatively regulated miR-186-5p expression by acting as a molecular sponge. miR-186-5p targeted to regulate BTG2 negatively.</p><p><strong>Conclusion: </strong>Interfering with ZFAS1 can upregulate miR-186-5p and thus inhibit BTG2 expression, thereby ameliorating MIRI.</p>","PeriodicalId":12175,"journal":{"name":"Expert Review of Clinical Immunology","volume":" ","pages":"1-12"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LncRNA ZFAS1/miR-186-5p axis is involved in oxidative stress inhibition of myocardial ischemia-reperfusion injury by targeting BTG2.\",\"authors\":\"Yi Xiang, Shan Hui, Hao Nie, Chun Guo\",\"doi\":\"10.1080/1744666X.2024.2411999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To probe the involvement of long noncoding RNA zinc finger antisense 1 (ZFAS1)/microRNA (miR)-186-5p axis in inhibiting oxidative stress in myocardial ischemia-reperfusion injury (MIRI) by targeting B-cell translocation gene 2 (BTG2).</p><p><strong>Methods: </strong>The MIRI mice model was established by ligating the left anterior descending branch of the left coronary artery in C57BL/6 mice. The in vitro MIRI model was constructed by hypoxia and reoxygenation of HL-1 cardiomyocytes. Cardiomyocyte apoptosis and the extent of myocardial injury in mice were detected. The apoptosis rates, malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in HL-1 cells were assessed. The relationship among ZFAS1, miR-186-5p, and BTG2 was verified.</p><p><strong>Results: </strong>High ZFAS1 and BTG2 levels and low miR-186-5p levels were demonstrated in I/R-injured myocardial tissues and in H/R-treated cardiomyocytes. Interference with ZFAS1 or elevation of miR-186-5p inhibited apoptosis and oxidative stress in H/R model cardiomyocytes and I/R-injured myocardial tissues. Overexpressing BTG2 impaired the ameliorative effects of miR-186-5p on MIRI. ZFAS1 negatively regulated miR-186-5p expression by acting as a molecular sponge. miR-186-5p targeted to regulate BTG2 negatively.</p><p><strong>Conclusion: </strong>Interfering with ZFAS1 can upregulate miR-186-5p and thus inhibit BTG2 expression, thereby ameliorating MIRI.</p>\",\"PeriodicalId\":12175,\"journal\":{\"name\":\"Expert Review of Clinical Immunology\",\"volume\":\" \",\"pages\":\"1-12\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Review of Clinical Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/1744666X.2024.2411999\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Review of Clinical Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1744666X.2024.2411999","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
LncRNA ZFAS1/miR-186-5p axis is involved in oxidative stress inhibition of myocardial ischemia-reperfusion injury by targeting BTG2.
Objective: To probe the involvement of long noncoding RNA zinc finger antisense 1 (ZFAS1)/microRNA (miR)-186-5p axis in inhibiting oxidative stress in myocardial ischemia-reperfusion injury (MIRI) by targeting B-cell translocation gene 2 (BTG2).
Methods: The MIRI mice model was established by ligating the left anterior descending branch of the left coronary artery in C57BL/6 mice. The in vitro MIRI model was constructed by hypoxia and reoxygenation of HL-1 cardiomyocytes. Cardiomyocyte apoptosis and the extent of myocardial injury in mice were detected. The apoptosis rates, malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in HL-1 cells were assessed. The relationship among ZFAS1, miR-186-5p, and BTG2 was verified.
Results: High ZFAS1 and BTG2 levels and low miR-186-5p levels were demonstrated in I/R-injured myocardial tissues and in H/R-treated cardiomyocytes. Interference with ZFAS1 or elevation of miR-186-5p inhibited apoptosis and oxidative stress in H/R model cardiomyocytes and I/R-injured myocardial tissues. Overexpressing BTG2 impaired the ameliorative effects of miR-186-5p on MIRI. ZFAS1 negatively regulated miR-186-5p expression by acting as a molecular sponge. miR-186-5p targeted to regulate BTG2 negatively.
Conclusion: Interfering with ZFAS1 can upregulate miR-186-5p and thus inhibit BTG2 expression, thereby ameliorating MIRI.
期刊介绍:
Expert Review of Clinical Immunology (ISSN 1744-666X) provides expert analysis and commentary regarding the performance of new therapeutic and diagnostic modalities in clinical immunology. Members of the International Editorial Advisory Panel of Expert Review of Clinical Immunology are the forefront of their area of expertise. This panel works with our dedicated editorial team to identify the most important and topical review themes and the corresponding expert(s) most appropriate to provide commentary and analysis. All articles are subject to rigorous peer-review, and the finished reviews provide an essential contribution to decision-making in clinical immunology.
Articles focus on the following key areas:
• Therapeutic overviews of specific immunologic disorders highlighting optimal therapy and prospects for new medicines
• Performance and benefits of newly approved therapeutic agents
• New diagnostic approaches
• Screening and patient stratification
• Pharmacoeconomic studies
• New therapeutic indications for existing therapies
• Adverse effects, occurrence and reduction
• Prospects for medicines in late-stage trials approaching regulatory approval
• Novel treatment strategies
• Epidemiological studies
• Commentary and comparison of treatment guidelines
Topics include infection and immunity, inflammation, host defense mechanisms, congenital and acquired immunodeficiencies, anaphylaxis and allergy, systemic immune diseases, organ-specific inflammatory diseases, transplantation immunology, endocrinology and diabetes, cancer immunology, neuroimmunology and hematological diseases.