Andhi Suyatno, Wa O Nurfinti, Chika P A Kusuma, Yusuf A Pratama, Chrismawan Ardianto, Samirah Samirah, Erreza Rahadiansyah, Junaidi Khotib, Aniek S Budiatin
{"title":"含壳聚糖/明胶/双氯芬酸和牛羟基磷灰石的双层支架对兔关节缺损模型中软骨/软骨下再生的影响","authors":"Andhi Suyatno, Wa O Nurfinti, Chika P A Kusuma, Yusuf A Pratama, Chrismawan Ardianto, Samirah Samirah, Erreza Rahadiansyah, Junaidi Khotib, Aniek S Budiatin","doi":"10.1155/2024/6987676","DOIUrl":null,"url":null,"abstract":"<p><p>Subchondral defects are often caused by trauma involving cartilage damage, leading to subsequent damage to the underlying bone, specifically the subchondral region. Bilayer scaffolds made from biomaterials, such as bovine hydroxyapatite, possess biocompatible and biodegradable properties that mimic the natural environmental conditions of target tissues so that they can support the formation of new tissues. On the other side, diclofenac as an anti-inflammatory drug potentiates to inhibit the inflammatory excess regarding the damage. This study aims to study the effectiveness of diclofenac scaffold to rabbit joint defect model. The scaffold was implanted in the rabbit femoral trochlear bone hole, which had a diameter of 5 mm and a depth of 4 mm. After 28 days of intervention, the animals were examined using macroscopic evaluation, hematoxylin-eosin (HE) staining, and immunohistochemistry (IHC) for type I collagen and type II collagen. Subsequently, the cartilage was evaluated using the International Cartilage Repair Society (ICRS) scoring system. The macroscopic ICRS scores were significantly higher (<i>p</i> < 0.05) in the bilayer scaffold implantation group compared to the monolayer scaffold and control groups. Histological ICRS scores were also significantly higher (<i>p</i> < 0.05) in the bilayer scaffold group compared to the control group. Type II collagen expression was higher (<i>p</i> < 0.05) in the bilayer scaffold group compared to the monolayer scaffold and control groups, although type I collagen expression was lower in comparison. In conclusion, this research suggests that the diclofenac-loaded bilayer scaffold effectively enhances cartilage and subchondral bone regeneration.</p>","PeriodicalId":7369,"journal":{"name":"Advances in Pharmacological and Pharmaceutical Sciences","volume":"2024 ","pages":"6987676"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449564/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effectiveness of Bilayer Scaffold Containing Chitosan/Gelatin/Diclofenac and Bovine Hydroxyapatite on Cartilage/Subchondral Regeneration in Rabbit Joint Defect Models.\",\"authors\":\"Andhi Suyatno, Wa O Nurfinti, Chika P A Kusuma, Yusuf A Pratama, Chrismawan Ardianto, Samirah Samirah, Erreza Rahadiansyah, Junaidi Khotib, Aniek S Budiatin\",\"doi\":\"10.1155/2024/6987676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Subchondral defects are often caused by trauma involving cartilage damage, leading to subsequent damage to the underlying bone, specifically the subchondral region. Bilayer scaffolds made from biomaterials, such as bovine hydroxyapatite, possess biocompatible and biodegradable properties that mimic the natural environmental conditions of target tissues so that they can support the formation of new tissues. On the other side, diclofenac as an anti-inflammatory drug potentiates to inhibit the inflammatory excess regarding the damage. This study aims to study the effectiveness of diclofenac scaffold to rabbit joint defect model. The scaffold was implanted in the rabbit femoral trochlear bone hole, which had a diameter of 5 mm and a depth of 4 mm. After 28 days of intervention, the animals were examined using macroscopic evaluation, hematoxylin-eosin (HE) staining, and immunohistochemistry (IHC) for type I collagen and type II collagen. Subsequently, the cartilage was evaluated using the International Cartilage Repair Society (ICRS) scoring system. The macroscopic ICRS scores were significantly higher (<i>p</i> < 0.05) in the bilayer scaffold implantation group compared to the monolayer scaffold and control groups. Histological ICRS scores were also significantly higher (<i>p</i> < 0.05) in the bilayer scaffold group compared to the control group. Type II collagen expression was higher (<i>p</i> < 0.05) in the bilayer scaffold group compared to the monolayer scaffold and control groups, although type I collagen expression was lower in comparison. In conclusion, this research suggests that the diclofenac-loaded bilayer scaffold effectively enhances cartilage and subchondral bone regeneration.</p>\",\"PeriodicalId\":7369,\"journal\":{\"name\":\"Advances in Pharmacological and Pharmaceutical Sciences\",\"volume\":\"2024 \",\"pages\":\"6987676\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449564/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Pharmacological and Pharmaceutical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/6987676\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Pharmacological and Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/6987676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
摘要
软骨下缺损通常是由软骨损伤引起的外伤造成的,进而导致下层骨骼,特别是软骨下区域的损伤。牛羟基磷灰石等生物材料制成的双层支架具有生物相容性和生物可降解性,可模拟目标组织的自然环境条件,从而支持新组织的形成。另一方面,双氯芬酸作为一种抗炎药物,能有效抑制有关损伤的炎症反应。本研究旨在研究双氯芬酸支架对兔关节缺损模型的有效性。研究人员将双氯芬酸支架植入直径为 5 毫米、深度为 4 毫米的兔股骨蹄状突骨孔中。干预 28 天后,对动物进行宏观评估、苏木精-伊红(HE)染色和 I 型胶原蛋白和 II 型胶原蛋白免疫组化(IHC)检查。随后,使用国际软骨修复学会(ICRS)评分系统对软骨进行评估。与单层支架组和对照组相比,双层支架植入组的宏观ICRS评分明显更高(p < 0.05)。与对照组相比,双层支架组的组织学 ICRS 评分也明显更高(p < 0.05)。与单层支架组和对照组相比,双层支架组的Ⅱ型胶原表达更高(p < 0.05),但Ⅰ型胶原表达较低。总之,这项研究表明,双氯芬酸双层支架能有效促进软骨和软骨下骨的再生。
Effectiveness of Bilayer Scaffold Containing Chitosan/Gelatin/Diclofenac and Bovine Hydroxyapatite on Cartilage/Subchondral Regeneration in Rabbit Joint Defect Models.
Subchondral defects are often caused by trauma involving cartilage damage, leading to subsequent damage to the underlying bone, specifically the subchondral region. Bilayer scaffolds made from biomaterials, such as bovine hydroxyapatite, possess biocompatible and biodegradable properties that mimic the natural environmental conditions of target tissues so that they can support the formation of new tissues. On the other side, diclofenac as an anti-inflammatory drug potentiates to inhibit the inflammatory excess regarding the damage. This study aims to study the effectiveness of diclofenac scaffold to rabbit joint defect model. The scaffold was implanted in the rabbit femoral trochlear bone hole, which had a diameter of 5 mm and a depth of 4 mm. After 28 days of intervention, the animals were examined using macroscopic evaluation, hematoxylin-eosin (HE) staining, and immunohistochemistry (IHC) for type I collagen and type II collagen. Subsequently, the cartilage was evaluated using the International Cartilage Repair Society (ICRS) scoring system. The macroscopic ICRS scores were significantly higher (p < 0.05) in the bilayer scaffold implantation group compared to the monolayer scaffold and control groups. Histological ICRS scores were also significantly higher (p < 0.05) in the bilayer scaffold group compared to the control group. Type II collagen expression was higher (p < 0.05) in the bilayer scaffold group compared to the monolayer scaffold and control groups, although type I collagen expression was lower in comparison. In conclusion, this research suggests that the diclofenac-loaded bilayer scaffold effectively enhances cartilage and subchondral bone regeneration.