Xiaowei Gao , Xinke Jiang , James Haworth , Dingyi Zhuang , Shenhao Wang , Huanfa Chen , Stephen Law
{"title":"用于道路级别交通事故预测的不确定性感知概率图神经网络。","authors":"Xiaowei Gao , Xinke Jiang , James Haworth , Dingyi Zhuang , Shenhao Wang , Huanfa Chen , Stephen Law","doi":"10.1016/j.aap.2024.107801","DOIUrl":null,"url":null,"abstract":"<div><div>Traffic crashes present substantial challenges to human safety and socio-economic development in urban areas. Developing a reliable and responsible traffic crash prediction model is crucial to address growing public safety concerns and improve the safety of urban mobility systems. Traditional methods face limitations at fine spatiotemporal scales due to the sporadic nature of high-risk crashes and the predominance of non-crash characteristics. Furthermore, while most current models show promising occurrence prediction, they overlook the uncertainties arising from the inherent nature of crashes, and then fail to adequately map the hierarchical ranking of crash risk values for more precise insights. To address these issues, we introduce the <strong><u>S</u></strong>patio<strong><u>t</u></strong>emporal <strong><u>Z</u></strong>ero-<strong><u>I</u></strong>nflated <strong><u>T</u></strong>wee<strong><u>d</u></strong>ie <strong><u>G</u></strong>raph <strong><u>N</u></strong>eural <strong><u>N</u></strong>etworks (STZITD-GNN), the first uncertainty-aware probabilistic graph deep learning model in road-level daily-basis traffic crash prediction for multi-steps. Our model combines the interpretability of the statistical Tweedie family with the predictive power of graph neural networks, excelling in predicting a comprehensive range of crash risks. The decoder employs a compound Tweedie model, handling the non-Gaussian distribution inherent in crash data, with a zero-inflated component for accurately identifying non-crash cases and low-risk roads. The model accurately predicts and differentiates between high-risk, low-risk, and no-risk scenarios, providing a holistic view of road safety that accounts for the full spectrum of probability and severity of crashes. Empirical tests using real-world traffic data from London, UK, demonstrate that the STZITD-GNN surpasses other baseline models across multiple benchmarks, including a reduction in regression error of up to 34.60% in point estimation metrics and an improvement of above 47% in interval-based uncertainty metrics.</div></div>","PeriodicalId":6926,"journal":{"name":"Accident; analysis and prevention","volume":"208 ","pages":"Article 107801"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncertainty-aware probabilistic graph neural networks for road-level traffic crash prediction\",\"authors\":\"Xiaowei Gao , Xinke Jiang , James Haworth , Dingyi Zhuang , Shenhao Wang , Huanfa Chen , Stephen Law\",\"doi\":\"10.1016/j.aap.2024.107801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Traffic crashes present substantial challenges to human safety and socio-economic development in urban areas. Developing a reliable and responsible traffic crash prediction model is crucial to address growing public safety concerns and improve the safety of urban mobility systems. Traditional methods face limitations at fine spatiotemporal scales due to the sporadic nature of high-risk crashes and the predominance of non-crash characteristics. Furthermore, while most current models show promising occurrence prediction, they overlook the uncertainties arising from the inherent nature of crashes, and then fail to adequately map the hierarchical ranking of crash risk values for more precise insights. To address these issues, we introduce the <strong><u>S</u></strong>patio<strong><u>t</u></strong>emporal <strong><u>Z</u></strong>ero-<strong><u>I</u></strong>nflated <strong><u>T</u></strong>wee<strong><u>d</u></strong>ie <strong><u>G</u></strong>raph <strong><u>N</u></strong>eural <strong><u>N</u></strong>etworks (STZITD-GNN), the first uncertainty-aware probabilistic graph deep learning model in road-level daily-basis traffic crash prediction for multi-steps. Our model combines the interpretability of the statistical Tweedie family with the predictive power of graph neural networks, excelling in predicting a comprehensive range of crash risks. The decoder employs a compound Tweedie model, handling the non-Gaussian distribution inherent in crash data, with a zero-inflated component for accurately identifying non-crash cases and low-risk roads. The model accurately predicts and differentiates between high-risk, low-risk, and no-risk scenarios, providing a holistic view of road safety that accounts for the full spectrum of probability and severity of crashes. Empirical tests using real-world traffic data from London, UK, demonstrate that the STZITD-GNN surpasses other baseline models across multiple benchmarks, including a reduction in regression error of up to 34.60% in point estimation metrics and an improvement of above 47% in interval-based uncertainty metrics.</div></div>\",\"PeriodicalId\":6926,\"journal\":{\"name\":\"Accident; analysis and prevention\",\"volume\":\"208 \",\"pages\":\"Article 107801\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accident; analysis and prevention\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001457524003464\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ERGONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accident; analysis and prevention","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001457524003464","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ERGONOMICS","Score":null,"Total":0}
Uncertainty-aware probabilistic graph neural networks for road-level traffic crash prediction
Traffic crashes present substantial challenges to human safety and socio-economic development in urban areas. Developing a reliable and responsible traffic crash prediction model is crucial to address growing public safety concerns and improve the safety of urban mobility systems. Traditional methods face limitations at fine spatiotemporal scales due to the sporadic nature of high-risk crashes and the predominance of non-crash characteristics. Furthermore, while most current models show promising occurrence prediction, they overlook the uncertainties arising from the inherent nature of crashes, and then fail to adequately map the hierarchical ranking of crash risk values for more precise insights. To address these issues, we introduce the Spatiotemporal Zero-Inflated Tweedie Graph Neural Networks (STZITD-GNN), the first uncertainty-aware probabilistic graph deep learning model in road-level daily-basis traffic crash prediction for multi-steps. Our model combines the interpretability of the statistical Tweedie family with the predictive power of graph neural networks, excelling in predicting a comprehensive range of crash risks. The decoder employs a compound Tweedie model, handling the non-Gaussian distribution inherent in crash data, with a zero-inflated component for accurately identifying non-crash cases and low-risk roads. The model accurately predicts and differentiates between high-risk, low-risk, and no-risk scenarios, providing a holistic view of road safety that accounts for the full spectrum of probability and severity of crashes. Empirical tests using real-world traffic data from London, UK, demonstrate that the STZITD-GNN surpasses other baseline models across multiple benchmarks, including a reduction in regression error of up to 34.60% in point estimation metrics and an improvement of above 47% in interval-based uncertainty metrics.
期刊介绍:
Accident Analysis & Prevention provides wide coverage of the general areas relating to accidental injury and damage, including the pre-injury and immediate post-injury phases. Published papers deal with medical, legal, economic, educational, behavioral, theoretical or empirical aspects of transportation accidents, as well as with accidents at other sites. Selected topics within the scope of the Journal may include: studies of human, environmental and vehicular factors influencing the occurrence, type and severity of accidents and injury; the design, implementation and evaluation of countermeasures; biomechanics of impact and human tolerance limits to injury; modelling and statistical analysis of accident data; policy, planning and decision-making in safety.