Vijay Govindarajan, Charles Wanna, Nils P Johnson, Arun V Kolanjiyil, Hyunggun Kim, Danai Kitkungvan, David M McPherson, Jane Grande-Allen, Krishnan B Chandran, Antony Estrera, Danny Ramzy, Siddharth Prakash
{"title":"利用流体结构相互作用揭示主动脉血液动力学:从生物力学角度洞察多主动脉病变的双尖瓣主动脉瓣动力学。","authors":"Vijay Govindarajan, Charles Wanna, Nils P Johnson, Arun V Kolanjiyil, Hyunggun Kim, Danai Kitkungvan, David M McPherson, Jane Grande-Allen, Krishnan B Chandran, Antony Estrera, Danny Ramzy, Siddharth Prakash","doi":"10.1007/s10237-024-01892-w","DOIUrl":null,"url":null,"abstract":"<p><p>Aortic lesions, exemplified by bicuspid aortic valves (BAVs), can complicate congenital heart defects, particularly in Turner syndrome patients. The combination of BAV, dilated ascending aorta, and an elongated aortic arch presents complex hemodynamics, requiring detailed analysis for tailored treatment strategies. While current clinical decision-making relies on imaging modalities offering limited biomechanical insights, integrating high-performance computing and fluid-structure interaction algorithms with patient data enables comprehensive evaluation of diseased anatomy and planned intervention. In this study, a patient-specific workflow was utilized to biomechanically assess a Turner syndrome patient's BAV, dilated ascending aorta, and elongated arch. Results showed significant improvements in valve function (effective orifice area, EOA increased approximately twofold) and reduction in valve stress (~ 1.8-fold) following virtual commissurotomy, leading to enhanced flow dynamics and decreased viscous dissipation (~ twofold) particularly in the ascending aorta. However, increased viscous dissipation in the distal transverse aortic arch offset its local reduction in the AAo post-intervention, emphasizing the elongated arch's role in aortic hemodynamics. Our findings highlight the importance of comprehensive biomechanical evaluation and integrating patient-specific modeling with conventional imaging techniques for improved disease assessment, risk stratification, and treatment planning, ultimately enhancing patient outcomes.</p>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling aortic hemodynamics using fluid structure interaction: biomechanical insights into bicuspid aortic valve dynamics with multiple aortic lesions.\",\"authors\":\"Vijay Govindarajan, Charles Wanna, Nils P Johnson, Arun V Kolanjiyil, Hyunggun Kim, Danai Kitkungvan, David M McPherson, Jane Grande-Allen, Krishnan B Chandran, Antony Estrera, Danny Ramzy, Siddharth Prakash\",\"doi\":\"10.1007/s10237-024-01892-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aortic lesions, exemplified by bicuspid aortic valves (BAVs), can complicate congenital heart defects, particularly in Turner syndrome patients. The combination of BAV, dilated ascending aorta, and an elongated aortic arch presents complex hemodynamics, requiring detailed analysis for tailored treatment strategies. While current clinical decision-making relies on imaging modalities offering limited biomechanical insights, integrating high-performance computing and fluid-structure interaction algorithms with patient data enables comprehensive evaluation of diseased anatomy and planned intervention. In this study, a patient-specific workflow was utilized to biomechanically assess a Turner syndrome patient's BAV, dilated ascending aorta, and elongated arch. Results showed significant improvements in valve function (effective orifice area, EOA increased approximately twofold) and reduction in valve stress (~ 1.8-fold) following virtual commissurotomy, leading to enhanced flow dynamics and decreased viscous dissipation (~ twofold) particularly in the ascending aorta. However, increased viscous dissipation in the distal transverse aortic arch offset its local reduction in the AAo post-intervention, emphasizing the elongated arch's role in aortic hemodynamics. Our findings highlight the importance of comprehensive biomechanical evaluation and integrating patient-specific modeling with conventional imaging techniques for improved disease assessment, risk stratification, and treatment planning, ultimately enhancing patient outcomes.</p>\",\"PeriodicalId\":489,\"journal\":{\"name\":\"Biomechanics and Modeling in Mechanobiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomechanics and Modeling in Mechanobiology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10237-024-01892-w\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10237-024-01892-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Unraveling aortic hemodynamics using fluid structure interaction: biomechanical insights into bicuspid aortic valve dynamics with multiple aortic lesions.
Aortic lesions, exemplified by bicuspid aortic valves (BAVs), can complicate congenital heart defects, particularly in Turner syndrome patients. The combination of BAV, dilated ascending aorta, and an elongated aortic arch presents complex hemodynamics, requiring detailed analysis for tailored treatment strategies. While current clinical decision-making relies on imaging modalities offering limited biomechanical insights, integrating high-performance computing and fluid-structure interaction algorithms with patient data enables comprehensive evaluation of diseased anatomy and planned intervention. In this study, a patient-specific workflow was utilized to biomechanically assess a Turner syndrome patient's BAV, dilated ascending aorta, and elongated arch. Results showed significant improvements in valve function (effective orifice area, EOA increased approximately twofold) and reduction in valve stress (~ 1.8-fold) following virtual commissurotomy, leading to enhanced flow dynamics and decreased viscous dissipation (~ twofold) particularly in the ascending aorta. However, increased viscous dissipation in the distal transverse aortic arch offset its local reduction in the AAo post-intervention, emphasizing the elongated arch's role in aortic hemodynamics. Our findings highlight the importance of comprehensive biomechanical evaluation and integrating patient-specific modeling with conventional imaging techniques for improved disease assessment, risk stratification, and treatment planning, ultimately enhancing patient outcomes.
期刊介绍:
Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that
(1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury,
(2) identify and quantify mechanosensitive responses and their mechanisms,
(3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and
(4) report discoveries that advance therapeutic and diagnostic procedures.
Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.